《算法导论》习题解答 Chapter 22.1-5(求平方图)

本文详细介绍了如何使用邻接矩阵来求解平方图,通过矩阵相乘的方法,算法复杂度为O(V^3),并利用数学归纳法证明了算法的正确性。输入复杂度主要由边的数量决定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、邻接矩阵实现

思路:如果是邻接矩阵存储,设邻接矩阵为A,则A*A即为平方图,只需要矩阵相乘即可;

伪代码:

for i=1 to n
	for j=1 to n
		for k=1 to n
			result[i][j]+=matrix[i][k]*matrix[k][j];

算法复杂度

两个n维数组相乘,因此复杂度为O(V^3),当然可以通过Strassen算法稍加改进.<

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值