Bellman-Ford算法 解决单源最短路
最短路是图问题中常见的一种问题,最短路也分很多种类。之前在写题的时候接触到Dijkstra算法。但是后来接触到更多单源最短路问题后发现,Dijkstra算法虽然有优于Bellman-Ford算法的时间复杂度,但是舍弃对负权回路的检测。而Bellman-Ford算法可以检测到负权回路,这个时候程序就会返回值提示含有负权回路,此时不存在最短路。在开始谈Bellman-Ford算法的原理之前(博主也刚刚学,讲的不好还望大牛们指出),需要提一下最短路中重要的一个性质,这可能涉及到后面对算法的理解。
若一条路径A->1->2->->......->B->a->b->......->C是A到C的最短路径,那么A->1->2->..->B一定是A到B的最短路径。若存在更优的从A到B的路径,那么就存在从A到C的最短路径。所以在Bellman-Ford算法中使用松弛操作逐步将从起点每个结点的路径优化。最终得到到达每个节点的最短路径(如果存在的话,因为如果存在负权回路,那么就不存在最短路径)。
负权回路指的是闭合且遍历环上所有点后得到的路径长度为负值。
例如:A-->(+5)B-->(-5)C-->(-1)A。显然这里形成了一个由A,B,C构成的回路,且A->B,B->C,C->A的权值的和为负数,那么只要不断地沿该回路走下去,会得到一个大小为负无穷的结果。这时最短路径是不存在的。
Bellman-Ford算法需要初始化。首先要将所有点的最短路径初始化为无穷大(在具体环境中不可能达到的值)。将起始结点的最短路径置为0。对n个结点需要进行n-1次松弛操作。保证每个结点能够求到其最短路径(若存在)。每次松弛操作考察当前结点i和所有边,若i的最短路径+i与和它联通的结点u之间的权的值小于u到起始点的最短路径,那么就更新u到起始点的最短路径。(Bellman-Ford算法中每次循环考察所有边)。
实现代码:
#include<iostream>
#include<cstring>
#define INF 0x3f3f3f
using namespace std;
struct Edge
{
int u,v;
int w;
}edge[10005];
int dist[20015],pos[10005];
bool relax(Edge *edge,int n,int m)
{
for (int i=1;i<n;i++)
{
for (int j=0;j<m;j++)
{
int a=edge[j].u,b=edge[j].v,wei=edge[j].w;
dist[b]=min(dist[b],dist[a]+wei);
}
}
for (int i=0;i<m;i++)
{
int a=edge[i].u,b=edge[i].v,wei=edge[i].w;
if (wei+dist[a]<dist[b])
{
return false;
}
}
return true;
}
int main()
{
memset(dist,INF,sizeof dist); //将所有点到起始点的最短路径初始化为无穷
for(int i=0;i<10005;i++)
edge[i].w=INF; //将每条边的权重初始化为无穷大
int s,n,m; //起点,边的数量与权重。
cin>>s>>n>>m;
dist[s]=0;//起点到自己的最短路径为0
for (int i=1;i<n;i++)
cin>>pos[i]; //保存结点
pos[0]=s;
for (int i=0;i<m;i++)
{
cin>>edge[i].u>>edge[i].v>>edge[i].w; //保存边的信息
}
if (relax(edge,n,m))
{
for (int i=1;i<n;i++)
cout<<"Distance of "<<i<<": "<<dist[pos[i]]<<"\n";
}
else
cout<<"No answer\n";
return 0;
}
测试数据: