最短路径算法(Dijkstra、Bellman-Ford、SPFA、Floyd)

本文介绍了四种解决最短路径问题的算法:Dijkstra、Bellman-Ford、SPFA和Floyd。Dijkstra适用于非负权重,能用邻接矩阵或邻接表实现,堆优化后时间复杂度为O(VlogV+E)。Bellman-Ford能处理负权重,但时间复杂度为O(VE),存在负环时会无限循环。SPFA是一种改进的Bellman-Ford,通常效率更高,但在有负环情况下退化为O(VE)。Floyd解决全源最短路问题,时间复杂度为O(n3),适合用邻接矩阵实现。
摘要由CSDN通过智能技术生成

《算法笔记》笔记

解决最短路径问题的常用算法有Dijkstra、Bellman-Ford、SPFA、Floyd算法。

1、Dijkstra

(1) 解决单源最短路问题。即给定图G和起点s,通过算法得到S到达其他每个顶点的最短距离。只能应对所有边权都是非负数的情况,

Dijkstra(G,d[],s){
   
	fill(d,d+N,INF);
	d[s] = 0;
	for(循环n次){
   
		u = 使d[u]最小的还未被访问的顶点的编号;
		记u已被访问;
		for(从u出发能到达的所有顶点v){
   
			if(v未被访问&&以u为中介点使s到顶点v的最短距离d[v]更优){
   
				优化d[v]
			}
		}
	}
}

(2) 时间复杂度:

  • 使用邻接矩阵:外层循环O(V),内层循环(寻找最小的d[u]需要O(V),枚举v需要O(V)),总复杂度为O(V*(V+V)) = O(V2
  • 使用邻接表:外层循环O(V),内层循环(寻找最小的d[u]需要O(V)、枚举v需要O(adj[u].size))产生,对整个程序来说枚举v的次数总共为O( ∑ u = 0 u = n − 1 a d j [ u ] . s i z e \sum_{u=0}^{u=n-1}{adj[u].size}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值