《算法笔记》笔记
解决最短路径问题的常用算法有Dijkstra、Bellman-Ford、SPFA、Floyd算法。
1、Dijkstra
(1) 解决单源最短路问题。即给定图G和起点s,通过算法得到S到达其他每个顶点的最短距离。只能应对所有边权都是非负数的情况,
Dijkstra(G,d[],s){
fill(d,d+N,INF);
d[s] = 0;
for(循环n次){
u = 使d[u]最小的还未被访问的顶点的编号;
记u已被访问;
for(从u出发能到达的所有顶点v){
if(v未被访问&&以u为中介点使s到顶点v的最短距离d[v]更优){
优化d[v]
}
}
}
}
(2) 时间复杂度:
- 使用邻接矩阵:外层循环O(V),内层循环(寻找最小的d[u]需要O(V),枚举v需要O(V)),总复杂度为O(V*(V+V)) = O(V2)
- 使用邻接表:外层循环O(V),内层循环(寻找最小的d[u]需要O(V)、枚举v需要O(adj[u].size))产生,对整个程序来说枚举v的次数总共为O( ∑ u = 0 u = n − 1 a d j [ u ] . s i z e \sum_{u=0}^{u=n-1}{adj[u].size}