SVD 与 PCA 的直观解释(3): SVD的直观解释及推导

引子:SVD分解就是把一个实数矩阵M分拆成UDV。U,V都是正交旋转矩阵。这个分拆可以形象的理解为,我要看看这个空间M性质怎么样?那我可以用标准笛卡尔空间来构造出一个一模一样的M空间。想象M空间是个特殊形状的泥塑,笛卡尔空间是块标准的正方形泥块。把笛卡尔空间放在手里,先旋转着看看(即左乘V),再找合适的地方捏捏它(再左乘D),好让它和M一样。最后再旋转(再左乘U),把它摆得和M一样。这样就360度无死角的构造了一个M空间。如果发现M空间有的地方很扁,那么我就掉丢这个维度,这就是SVD的降维,也是SVD的核心。

注释:关于上面为何是特征向量的说明。

         


PS:一室友秦屌,问我M不是方阵,是3*2的矩阵。作用在2*1的向量 x 上,Mx 就变成了三维的了。这还能通过两次旋转达到效果吗?注意,旋转也可以是不同维度的,不只是在平面内旋转。一个正方形我可以让它绕着原点立起来旋转。这就由二维变成三维了。


reference:

http://www.ams.org/samplings/feature-column/fcarc-svd

http://en.wikipedia.org/wiki/Singular_value_decomposition#History

http://diaorui.net/archives/61


  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 适合毕业设计、课程设计作业。这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。 所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值