OpenCV霍夫梯度找圆算法

OpenCV使用霍夫梯度算法检测图像中的圆。

算法步骤如下


寻找圆心

  1. 用Canny算法进行边缘检测,得到边界二值图
  2. 用Sobel算子计算原图的梯度
  3. 遍历边缘二值图中的非0点,沿着梯度方向和反方向画线段(梯度方向为圆弧的法线方向,即半径方向),线段的起点和长度由参数允许的半径区间决定。将线段经过的点在累加器中记数
  4. 对累计器中的点从大到小排序,记数越大越有可能成为圆心,优先估计半径

对某个可能的圆心作半径估计
  1. 计算所有边界图中的非0点离圆心的距离,并从小到大排序
  2. 从小半径r开始,距离相差在一个小量范围内的点,都认为是同一个圆,记数属于该半径r的非0点数,记为n
  3. 尝试放大半径,同样记数改半径的点数
  4. 判断两个半径孰优孰劣的依据——点的线密度(点数n/半径r),密度越高,半径的可信度越大
  5. 重复以上步骤,直至半径超过参数允许的范围,从而得到最优半径
import cv2 as cv import numpy as np def hough_circle(image): #因为霍夫检测对噪声很明显,所以需要先滤波一下。 dst =cv.pyrMeanShiftFiltering(image,10,100) cimage=cv.cvtColor(dst,cv.COLOR_BGR2GRAY) circles = cv.HoughCircles(cimage,cv.HOUGH_GRADIENT,1,40,param1=40,param2=29,minRadius=30,maxRadius=0) #把circles包含的圆心和半径的值变为整数 circles = np.uint16(np.around(circles)) for i in circles[0]: cv.circle(image,(i[0],i[1]),i[2],(0,255,0),3) cv.imshow("circle",image) src = cv.imread("E:/opencv/picture/coins.jpg") cv.imshow("inital_window",src) hough_circle(src) cv.waitKey(0) cv.destroyAllWindows() 霍夫圆变换的基本思路是认为图像上每一个非零像素点都有可能是一个潜在的圆上的一点, 跟霍夫线变换一样,也是通过投票,生成累积坐标平面,设置一个累积权重来定位圆。 在笛卡尔坐标系中圆的方程为: 其中(a,b)是圆心,r是半径,也可以表述为: 即 在笛卡尔的xy坐标系中经过某一点的所有圆映射到abr坐标系中就是一条三维的曲线: 经过xy坐标系中所有的非零像素点的所有圆就构成了abr坐标系中很多条三维的曲线。 在xy坐标系中同一个圆上的所有点的圆方程是一样的,它们映射到abr坐标系中的是同一个点,所以在abr坐标系中该点就应该有圆的总像素N0个曲线相交。 通过判断abr中每一点的相交(累积)数量,大于一定阈值的点就认为是圆。 以上是标准霍夫圆变换实现算法。 问题是它的累加到一个三维的空间,意味着比霍夫线变换需要更多的计算消耗。 Opencv霍夫圆变换对标准霍夫圆变换做了运算上的优化。 它采用的是“霍夫梯度法”。它的检测思路是去遍历累加所有非零点对应的圆心,对圆心进行考量。 如何定位圆心呢?圆心一定是在圆上的每个点的模向量上,即在垂直于该点并且经过该点的切线的垂直线上,这些圆上的模向量的交点就是圆心。 霍夫梯度法就是要去查这些圆心,根据该“圆心”上模向量相交数量的多少,根据阈值进行最终的判断。 bilibili: 注意: 1.OpenCV霍夫圆变换函数原型为:HoughCircles(image, method, dp, minDist[, circles[, param1[, param2[, minRadius[, maxRadius]]]]]) -> circles image参数表示8位单通道灰度输入图像矩阵。 method参数表示圆检测方法,目前唯一实现的方法是HOUGH_GRADIENT。 dp参数表示累加器与原始图像相比的分辨率的反比参数。例如,如果dp = 1,则累加器具有与输入图像相同的分辨率。如果dp=2,累加器分辨率是元素图像的一半,宽度和高度也缩减为原来的一半。 minDist参数表示检测到的两个圆心之间的最小距离。如果参数太小,除了真实的一个圆圈之外,可能错误地检测到多个相邻的圆圈。如果太大,可能会遗漏一些圆圈。 circles参数表示检测到的圆的输出向量,向量内第一个元素是圆的横坐标,第二个是纵坐标,第三个是半径大小。 param1参数表示Canny边缘检测的高阈值,低阈值会被自动置为高阈值的一半。 param2参数表示圆心检测的累加阈值,参数值越小,可以检测越多的假圆圈,但返回的是与较大累加器值对应的圆圈。 minRadius参数表示检测到的圆的最小半径。 maxRadius参数表示检测到的圆的最大半径。 2.OpenCV画圆的circle函数原型:circle(img, center, radius, color[, thickness[, lineType[, shift]]]) -> img img参数表示源图像。 center参数表示圆心坐标。 radius参数表示圆的半径。 color参数表示设定圆的颜色。 thickness参数:如果是正数,表示圆轮廓的粗细程度。如果是负数,表示要绘制实心圆。 lineType参数表示圆线条的类型。 shift参数表示圆心坐标和半径值中的小数位数。
### OpenCV霍夫圆检测算法工作原理 霍夫圆变换是一种用于图像处理中的技术,旨在识别圆形物体。该方法基于标准的霍夫变换扩展而来,在极坐标系下表示直线的基础上进一步推广到描述圆。 #### 基本概念 在理想情况下,一个完美的圆形可以由三个参数定义:圆心位置 (x, y) 和半径 r。因此,对于每一个可能成为圆上一点的边缘像素,都对应着三维空间内的一个锥面方程: \[ (x_{c} - x)^{2} + (y_{c}-y)^{2}=r^{2} \] 其中 \(x_c\) 和 \(y_c\) 是候选圆心的位置,\(x,y\) 表示当前考虑的边界点坐标[^1]。 为了减少计算复杂度并提高效率,实际应用中通常采用改进版——Hough Gradient 方法来实现霍夫圆检测。这种方法利用了 Canny 边缘检测器获取梯度方向信息,并通过两步过程完成最终的结果输出: - **累积数组构建**: 对于每个非零梯度幅值点(即潜在的圆周上的点),依据其局部梯度方向确定一系列可能存在的中心位置及其对应的投票权重。 - **峰值查与验证**: 在累加得到的空间内寻局部极大值作为初步估计出来的圆心;随后根据设定阈值筛选符合条件者,并结合邻域抑制机制去除冗余重复项。 ```cpp std::vector<cv::Vec3f> circles; cv::HoughCircles(gray_image, circles, cv::HOUGH_GRADIENT, dp, minDist, param1, param2, minRadius, maxRadius); ``` 上述代码片段展示了如何调用 OpenCV 库函数 `HoughCircles` 来执行霍夫圆变换操作。这里需要注意几个重要参数的选择会影响性能表现以及准确性,比如最小距离(`minDist`)、高斯平滑程度(`dp`)等设置都需要根据具体应用场景灵活调整。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值