Horn–Schunck光流算法

Horn-Schunck光流算法通过全局方法估算图像的稠密光流场,基于灰度不变和光流场平滑假设。算法通过构建能量函数并寻找其最小值来求解光流问题。数学模型中,光流场的两个分量u和v通过定义的能量函数求得。算法由B.K.P. Horn和B.G. Schunck在1981年提出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

Horn–Schunck光流算法用一种全局方法估计图像的稠密光流场(即对图像中的每个像素计算光流)
算法基于两个假设

  1. 灰度不变假设
    物体上同一个点在图像中的灰度是不变的,即使物体发生了运动。(这个假设在稳定光照的情况可以满足,但是对于存在高光反射的图像是不成立的)
  2. 光流场平滑假设
    场景中属于同一物体的像素形成光流场向量应当十分平滑,只有在物体边界的地方才会出现光流的突变,但这只占图像的一小部分。总体来看图像的光流场应当是平滑的。
    算法构造了一个能量函数,求光流场的问题转化为求能量函数的最小值。

数学模型

给定图像序列 I(x,y,t) I ( x , y , t ) ,求光流场 V(x,y) V → ( x , y ) ,等价于求光流的两个分量 u(x,y) u ( x , y ) v(x,y) v ( x , y )
定义能量函数

E(u,v)=[(Ixu+Iyv+It)2+α2(u2+v2)]dxdy E ( u , v ) = ∬ [ ( I x u + I y v + I t ) 2 + α 2 ( ‖ ∇ u ‖ 2 + ‖ ∇ v ‖ 2 ) ] d x d y

其中 Ix,Iy,It I x , I y , I t 分别是图像对 x,y,t x , y , t 的导数
(Ixu+Iyv+It)2 ( I x u + I y v + I t ) 2 是灰度变化因子( Ixu+Iyv=It
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值