1、CAP理论
1) CAP 理论给出了3个基本要素:
- 一致性 ( Consistency) :任何一个读操作总是能读取到之前完成的写操作结果;
- 可用性 ( Availability) :每一个操作总是能够在确定的时间内返回;
- 分区可容忍性 (Tolerance of network Partition) :在出现网络分区的情况下,仍然能够满足一致性和可用性;
CAP 理论指出,三者不能同时满足。对这个理论有不少异议,但是它的参考价值依然巨大。
这个理论并不能为不满足这3个基本要求的设计提供借口,只是说明理论上3者不可绝对的满足,而且工程上从来不要求绝对的一致性或者可用性,但是必须寻求一种平衡和最优。
2) OpenStack、Swift与CAP的工程实践
对照CAP理论,OpenStack的分布式对象存储系统Swift满足了可用性和分区容忍性,没有保证一致性(可选的),只是实现了最终一致性。Swift如果GET操作没有在请求头中包含’X-Newest’头,那么这次读取有可能读到的不是最新的object,在一致性窗口时间内object没有被更新,那么后续GET操作读取的object将是最新的,保证了最终一致性;反之包含了’X-Newest’头,GET操作始终能读取到最新的obejct,就是一致的。
在OpenStack架构中,对于高可用性需要进行很多工作来保证。因此,下面将对OpenStack结构中的可用性进行讨论:
构建OpenStack的高可用性(HA,High Availability)
2、OpenStack的高可用性(OpenStack HA)


同其它大部分分布式系统一样,OpenStack也分为控制节点和计算节点两种不同功能的节点。控制节点提供除nova-compute以外的服务。这些组件和服务都是可以独立安装的,可以选择组合。
nova-compute在每个计算节点运行,暂且假设它是可信任的;或者使用备份机来实现故障转移(不过每个计算节点配置备份的代价相比收益似乎太大)。
控制节点的高可靠性是主要问题,而且对于不同的组件都有自己的高可靠性需求和方案。
(1)由于CotrolNode只有1个,且负责整个系统的管理和控制,因此当Cotrol Node不能提供正常服务时,怎么办?这就是常见的单节点故障(SPoF,single point of failure)问题。
高可用性基本上是没办法通过一台来达到目标的,更多的时候是设计方案确保在出问题的时候尽快接管故障机器,当然这要付出更大的成本。
对于单点问题,解决的方案一般是采用冗余设备或者热备,因为硬件的错误或者人为的原因,总是有可能造成单个或多个节点的失效,有时做节点的维护或者升级,也需要暂时停止某些节点,所以一个可靠的系统必须能承受单个或多个节点的停止。