大数是算法语言中的数据类型无法表示的数,其位数超过最大数据类型所能表示的范围,所以,在处理大数问题时首先要考虑的是怎样存储大数,然后是在这种存储方式下其处理的实现方法。
一般情况下大数的存储是采用字符数组来存储,即将大数当作一个字符串来存储,而对其处理是按其处理规则在数组中模拟实现。
四 大数除法。
大数除法,应该算是四则运算里面最难的一种了。不同于一般的模拟,除法操作步数模仿手工除法,而是利用减法操作实现的。
其基本思想是反复做除法,看从被除数里面最多能减去多少个除数,商就是多少。
逐个减显然太慢,要判断一次最多能减少多少个整的10的n次方。
以7546除23为例。
先减去23的100倍,就是2300,可以减3次,余下646。 此时商就是300;
然后646减去23的10倍,就是230,可以减2次,余下186。此时商就是320;
然后186减去23,可以减8次,此时商就是328.
根据这个思想,不难写出下面的代码。
还是那句话,可能算法效率不是很高。但是常规解题思路一般就是这样了。
如果以后有能力,有时间了。 我会试着去优化。
ps:大数系列学习资源来自 <c程序设计竞赛实训教程>一书和一些大牛的博客。
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define MaxLen 200
//函数SubStract功能:
//用长度为len1的大整数p1减去长度为len2的大整数p2
// 结果存在p1中,返回值代表结果的长度
//不够减 返回-1 正好够 返回0
int SubStract( int *p1, int *p2, int len1, int len2 )
{
int i;
if( len1 < len2 )
return -1;
if( len1 == len2 )
{ //判断p1 > p2
for( i=len1-1; i>=0; i-- )
{
if( p1[i] > p2[i] ) //若大,则满足条件,可做减法
break;
else if( p1[i] < p2[i] ) //否则返回-1
return -1;
}
}
for( i=0; i<=len1-1; i++ ) //从低位开始做减法
{
p1[i] -= p2[i];
if( p1[i] < 0 ) //若p1<0,则需要借位
{
p1[i] += 10; //借1当10
p1[i+1]--; //高位减1
}
}
for( i=len1-1; i>=0; i-- ) //查找结果的最高位
if( p1[i] ) //最高位第一个不为0
return (i+1); //得到位数并返回
return 0; //两数相等的时候返回0
}
int main()
{
int n, k, i, j; //n:测试数据组数
int len1, len2; //大数位数
int nTimes; //两大数相差位数
int nTemp; //Subtract函数返回值
int num_a[MaxLen]; //被除数
int num_b[MaxLen]; //除数
int num_c[MaxLen]; //商
char str1[MaxLen + 1]; //读入的第一个大数
char str2[MaxLen + 1]; //读入的第二个大数
scanf("%d",&n);
while ( n-->0 )
{
scanf("%s", str1); //以字符串形式读入大数
scanf("%s", str2);
for ( i=0; i<MaxLen; i++ ) //初始化清零操作
{
num_a[i] = 0;
num_b[i] = 0;
num_c[i] = 0;
}
len1 = strlen(str1); //获得大数的位数
len2 = strlen(str2);
for( j=0, i=len1-1; i>=0; j++, i-- )
num_a[j] = str1[i] - '0'; //将字符串转换成对应的整数,颠倒存储
for( j=0, i=len2-1; i>=0; j++, i-- )
num_b[j] = str2[i] - '0';
if( len1 < len2 ) //如果被除数小于除数,结果为0
{
printf("0\n");
continue; //利用continue直接跳出本次循环。 进入下一组测试
}
nTimes = len1 - len2; //相差位数
for ( i=len1-1; i>=0; i-- ) //将除数扩大,使得除数和被除数位数相等
{
if ( i>=nTimes )
num_b[i] = num_b[i-nTimes];
else //低位置0
num_b[i] = 0;
}
len2 = len1;
for( j=0; j<=nTimes; j++ ) //重复调用,同时记录减成功的次数,即为商
{
while((nTemp = SubStract(num_a,num_b + j,len1,len2 - j)) >= 0)
{
len1 = nTemp; //结果长度
num_c[nTimes-j]++;//每成功减一次,将商的相应位加1
}
}
//输出结果
for( i=MaxLen-1; num_c[i]==0 && i>=0; i-- );//跳过高位0
if( i>=0 )
for( ; i>=0; i-- )
printf("%d", num_c[i]);
else
printf("0");
printf("\n");
}
return 0;
}