自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Clichong

路漫且长

  • 博客(303)
  • 资源 (6)
  • 问答 (1)
  • 收藏
  • 关注

原创 论文阅读笔记 | 三维目标检测——VoxelRCNN算法

现有很多的point-based检测器获得比较好的效果,精确度要比voxel-based检测器要好,为此不少观点认为原始点云中的精确位置信息对于精确的目标定位是至关重要的。VoxelRCNN的动机就是能否保持voxel-based方法速度优势下,获取与point-based方法相当的性能,希望在准确性和效率之间取得平衡。作者通过实验分析,发现现有voxel-based方法的主要缺点是将3d特征体转换为BEV表示,而从未恢复3D结构上下文,这样就找到了需要提高的方向。对于voxel-based的方法,BEV表

2022-11-25 22:06:38 368 1

原创 论文阅读笔记 | 三维目标检测——PartA2算法

PointRCNN中发现了基于点云的3d目标中相比2d检测有一个与生俱来的优势,就是3d的标注框不仅提供了检测的目标框,同时还提供语义分割的前景点(也就是目标框中的点)。**在PartA2中,作者进一步发现了我们不仅可以获得需要检测的标注框及其包括的前景点,我们还可以获得每个前景点在标注框中的空间分布信息,或者说是每个前景点在标注框内的相对位置信息**。在现有的研究下,其实并没有完全的将3d标注框的信息完全利用上,这种前景点在标注框的分布信息是有利于提高3d检测网络的性能的。

2022-11-25 21:57:26 288

原创 论文阅读笔记 | 三维目标检测——PointPillars算法

PointPillars的出发点同样与SECOND一样,希望改进VoxelNet所使用3d卷积计算量太大推理速度太慢的问题。鉴于此,SECOND提出了稀疏卷积来提高普通3d卷积的推理速度,但是任然无法避免3d卷积的庞大计算量,没有从根本上解决这个问题,仍然需要使用计算昂贵的3d卷积操作。这个问题的核心本质是SECOND与VoxelNet将点云量化为三维空间上的一个个Voxel,所以3d卷积是无法避免的。为了从根本上解决3d卷积的问题,PointPillars提出了一种新颖的量化方法(paper中写到是e

2022-11-25 21:36:57 436 1

原创 论文阅读笔记 | 三维目标检测——SECOND算法

鉴于VoxelNet等3d检测算法中使用的3d卷积会导致计算量大且推理速度慢的问题,所以这里提出了一种稀疏卷积(sparse convolution method)。在介绍VoxelNet中,也提及到由于其损失结构采用直接回归的方式,虽然简洁但可能会限制其网络性能,在此基础上,SECOND提出了一个新的损失函数与数据增强策略来对其进行改进。

2022-11-25 21:31:47 465 1

原创 论文阅读笔记 | 三维目标检测——VoxelNet算法

以往的3d检测器都难免利用了手工设计特征(hand-crafted),不够智能不能实现end-to-end地自动提取特征,而如果利用全部点云输入,处理点云可能搞到100k个点的数据可能会带来极大的计算量(其实这里是可以对输入进行采样的,不过对于一个大场景来说数据点确实有点大,这时候对点云量化确实是一个比较好的选择,具体需要结合特定的场景和数据量)。为此,VoxelNet提出一个端对端的3d检测器,对点云数据进行量化,避免复杂场景带来的高计算。具体来说,VoxelNet将点云划分为等间距的3D体素,通过堆

2022-11-25 21:23:32 297 1

原创 论文阅读笔记 | 三维目标检测——Complex-YOLO算法

对于之前的网络结构来说,尽管精度很高,但是或多或少都存在rpn接口来获取高质量proposal来提高精度,既然是Two-stage网络必然会导致速度的减少。之前的sota工作基本上fps都在10以下,而complex-yolo的目的就是在精度和速度上追求一个权衡,将kitti数据集推广到预测8个类,面向真实复杂低延迟搞精度的实时业务场景。实际上,yolo系列的算法均是追求速度和精度上的权衡,追求高推理速度的实时性性能,而这也是自动驾驶所需要的。

2022-11-18 11:40:57 231 1

原创 论文阅读笔记 | 三维目标检测——AVOD算法

AVOD同样是一个two-stage(使用了RPN提取候选框)、anchor-based网络结构。获得较高的召回率对RPN网络来说是比较重要的,但对于稀疏的较低分辨率的输入来说(比如前视图和鸟瞰图)不足以让RPN输出高质量的候选框,且导致低召回率,这会在第二个阶段带来无法逆转的结构。基于这个考虑,AVOD设计了一个新颖的RPN结构可以通过在高分辨率特征图上进行多模态特征融合(将来自RGB图像和BEV的全分辨率特征图为输入),来提高小目标的定位精度。

2022-11-18 11:36:58 852 5

原创 论文阅读笔记 | 三维目标检测——F-PointNet算法

基与鸟瞰图投影的方法(类似MV3D)会在垂直方向上存在物体的遮挡,难以推广到其他更加广泛的真实场景。且现有对深度信息的提取也只限于二维特征图中(一般构造成二维的深度特征图),这样的量化表征方式会模糊自然3d对象的模式。现有工作很少直接对点云数据进行直接处理,此时出现了两个直接基于点云提取特征的结构:PointNet与PointNet++,如何利用这两个新颖结构进行3d目标检测也是难点之一。F-PointNet的一大创新是利用点云数据来表示深度信息,而不是映射在二维的深度通道上。简单来说,对来自RGB图像

2022-11-18 11:31:38 365

原创 论文阅读笔记 | 三维目标检测——MV3D算法

激光雷达可以提供物体的深度信息,而摄像头可以提供物体的细节语义信息,利用Lidar+Image两种模态理应可以获得更好的检测效果。一般来说,基于LIDAR点云的方法通常可以获得更准确的3D位置,而基于图像的方法在2D框评估方面具有更高的准确性,如何有效的利用来自与Lidar和Imgae两种模态获得更好的3d检测效果设计模型结构是MV3D的出发点,并启发于FractalNet和Deeply-Fused Net两个工作进行网络设计。此外,在Related Work中有些比较有趣的工作,比如利用体素和点云的多

2022-11-18 11:27:50 166

原创 论文阅读笔记 | 三维目标检测——VeloFCN算法

通过卷积核(4x2)下采样提取全局特征再进行上采样(4x2)与相同尺寸的特征图进行拼接,这样可以有效提高小目标检测率(这里VeloFCN没有说明具体的维度信息),最后再进行一个上采样分别为分类和回归构建与原尺寸(point map)一致的特征图,分别进行分类任务和回归任务。反之,则较大,以增强对远处目标的检测能力)。此外,在具体回归标注框过程中,对每个点云需要预测的ground truth的某个角点是:cp’=R(cp-p),其中p表示当前所在点,cp是标注框角点,cp’表示更改的标注框角点。

2022-11-18 11:22:13 405 1

原创 论文阅读笔记 | 三维目标检测——3DSSD

两阶段的3d检测网络一般包含upsample layer进行特征回传进一步提取全局point-wise特征,以及需要一个修正阶段(refinement stage)来对候选框进行微调,这两个步骤极大的耗费时间,同时让网络结构变得复杂。3D-SSD的目的就是为了进一步减少推理时间,抛弃这种PF layers以及refinement stage,只利用backbone进行下采样的特征提取来完成检测任务。此外,作为one-stage的检测算法,采用anchor-free+centerness的方式,3D-SSD极

2022-11-15 10:28:48 191 1

原创 论文阅读笔记 | 三维目标检测——PointRCNN

在PointRCNN诞生之前,对于点云的物体检测基本上是利用鸟瞰图(多视图的投影)或者是量化成Voxel再进行3D卷积的方法实现,这样量化的操作其实相比直接利用点云输入是有部分信息的丢失,而且3D卷积的计算量也较大。基于这个出发点,PointRCNN是第一个比较work完全以点云数据为输入的3d检测算法。以点云为输入就必然需要面对点云无序性等问题,但是也有其中的优势。相比于2d目标检测的ground truth是有可能重叠的,在一个3维空间中的object之间是彼此独立不可能重叠,也就是说对于点云数据的

2022-11-15 10:24:46 521 1

原创 论文阅读笔记 | 三维目标检测——PointNet++

PointNet作为直接以点云格式数据为输入的开创性网络,还存在需要改进的地方。曾经提及到,PointNet考虑到了全局性特征的方向拼接处理,但是忽视了点云局部特征的捕获。以CNN为例,通过递归性的卷积提取图像的局部特征,以实现在深层次中获得较大的感受野。那么,对于点云数据来说,也可以进行递归性提取局部特征,捕获点云的细粒度特征。为此PointNet++的主要思想就是,对点云继续局部划分然后进行局部性特征提取,随后再进行局部划分点云数据再对每个部分进行特征提取,从而实现层级性的特征提取操作。不断重复这个过程

2022-11-15 10:19:44 316 1

原创 论文阅读笔记 | 三维目标检测——PointNet

同时,在后续的提取特征中,同样对特征进行规范空间中的对齐。操作方法类似,也是利用提取后的特征通过T-Net获得仿射矩阵再作用到特征上实现变换,不过由于特征的维度一般比较大,难以优化,所以训练会添加一个正则化项,将特征的仿射矩阵转化为一个正交矩阵,同时正交矩阵是不会在输入中丢失信息的。这里PointNet用了很简单的方法,就是把这里获得的全局特征拼接到每个点的局部特征上,完成了局部特征与全局特征的结合,后续再使用一个共享参数的MLP来对这个局部和全局拼接的特征进行降维,再进行后续分割任务,对每个点进行分类。

2022-11-15 10:14:10 229 1

原创 Git | github工作流维护代码项目

4.git rebase main 我在xxx分支上,先把main移过来,然后根据我的commit来修改成新的内容。5.git push -f origin xxx 把rebase后并且更新过的代码再push到远端github上。7.git push origin xxx 将本地的xxxgit分支上传至github上的git。6.git commit 可以将暂存区里更新后的代码更新到本地git。1.git branch -d xxx 删除本地的git分支。5.git add 上传更新后的代码至暂存区。

2022-11-13 11:24:16 271

原创 Open3d系列 | 3. Open3d实现点云上采样、点云聚类、点云分割以及点云重建

点云下采样是对点云以一定的采样规则重新进行采样,目的是在保证点云整体几何特征不变的情况下,降低点云的密度,进而可以降低相关处理的数据量和算法复杂度。下面介绍三种下采样方式:体素下采样、均匀下采样、随机下采样.在sklearn工具包中,有大量的聚类算法提供使用,这里的点云数据可以有效的配置sklearn工具包,以实现效果。其中,open3d也自带了dbscan聚类的使用接口。这里不涉及具体的聚类算法解析。

2022-11-01 14:38:38 1046

原创 Open3d系列 | 2. Open3d实现点云数据增强

点云平移假设原始坐标P0为(x0,y0,z0),经过平移变化后变成P坐标(x,y,z),那么这个过程可以看成是P0向量经过了一个平移矩阵T的作用,变成了P向量。数学公式为:P = P0 + T点云旋转点云旋转通常有四种方式来表达欧拉角、旋转矩阵、旋转向量、四元数(搜索关键词:三维旋转变化、刚体运动)1)欧拉角欧拉角定义最为直观,即点云围绕XYZ三个轴分别进行旋转,对应的旋转角度即为α、β、γ。每做一次旋转可以得到一个旋转矩阵,分别对应Rx(α)、Ry(β)、Rz(γ)R。

2022-11-01 14:09:19 213

原创 Open3d系列 | 1. Open3d实现点云数据读写、点云配准、点云法向量计算

从这一篇博客开始,开始利用Open3d来处理点云数据。之后将围绕点云数据的多种处理方式来记录笔记。本篇博客的内容包括点云的文件格式介绍,点云数据的读取,以及点云的配准与点云的法向量计算。

2022-11-01 12:38:22 515

原创 点云在任意平面上获取二维投影

点云是在一个三维空间中由一堆无序的点所组成,那么在三维中理所应该可以在任意的二维平面:Ax + By + Cz + D = 0 中进行投影,获得不同平面中的二维视图。下面讲给出基础知识与手动推导过程,并使用代码进行验证推导结果。

2022-10-31 22:22:13 104

原创 pywintypes.com_error: (-2147221005, ‘无效的类字符串‘, None, None)

可以定位到问题的出错是:`DispatchEx("Excel.Application")`。因为我这里使用的是wps来测试,电脑上本身是没有安装Excel的,需要更改为:`DispatchEx("KET.Application")`

2022-10-25 15:54:56 367 1

原创 KITTI自动驾驶数据集的点云多种视图可视化

在本地上,可以安装一些软件,比如:Meshlab,CloudCompare等3D查看工具来对点云进行可视化。而这篇博客是将介绍一些代码工具将KITTI数据集进行可视化操作,包括点云鸟瞰图,FOV图,以及标注信息在图像+点云上的显示。

2022-10-16 11:39:15 835 4

原创 MMDetection3d的实用工具脚本

在MMDetection3d官方文档中,还提供了一些使用工具的介绍,比如日志分析、可视化实现(预测结果可视化,数据集可视化),还有模型复杂度计算与数据集转换等相关操作。这里利用本篇博客进行测试记录。

2022-10-16 10:40:41 495

原创 MMDetection3d对KITT数据集的训练与评估介绍

KITTI数据集中easy、moderate、hard根据标注框是否被遮挡、遮挡程度和框的高度进行定义的简单:最小边界框高度:40像素,最大遮挡级别:完全可见,最大截断:15%中等:最小边界框高度:25像素,最大遮挡水平:部分遮挡,最大截断:30%困难:最小边界框高度:25像素,最大遮挡级别:难以看到,最大截断:50%1. MMDet3d官方文档#1853. KITTI数据集3d目标检测的评价的含义4. 机器学习算法评估指标——3D目标检测5. 点云感知算法面试知识点(一)

2022-10-16 10:18:30 1132 2

原创 Pycharm配置运行参数

对于这种情况下,其实在pycharm上也是可以配置参数运行的。如有多个参数值,需要用空格分开。参数填写正确后,点“OK”,再执行“Run”菜单下的“Run”命令,就会得到正确运行结果。在pycharm中配置各种运行参数,就可以随意调试代码了。(可怜之前我还是傻傻的使用MobaXterm配置)设置运行时的配置,点击上图红框中选项,将需要传入的参数粘贴在下面的 Parameters处即可。是需要运行的python文件,而后面的全部是传递的参数。在跑python程序中,一般都会使用。这里传递的参数就比较多,

2022-10-15 16:13:30 1539

原创 Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|0.0.0.0|:443... failed

这里需要下载kitti的3D检测数据,从一个raw.githubusercontent.com的网站上进行wget下载txt文件,但是返回无法访问的错误。Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|0.0.0.0|:443…1)通过ip查询网站(https://site.ip138.com/raw.Githubusercontent.com/),查找raw.githubusercontent.com的IP地址。

2022-10-14 17:02:00 372

原创 error: Microsoft Visual C++ 14.0 or greater is required. Get it with “Microsoft C++ Build Tools“

错误定位为error: Microsoft Visual C++ 14.0 or greater is required,那么现在需要的是安装一个Visual studio,为此,大概就是安装mmdet时需要安装依赖pycocotools,这个是目标检测比较常见的一个工具包,然后安装这个依赖的过程中发生了错误。Visual Studio 2019的安装,自行网上搜索即可。(也可以正常安装mmdet)

2022-10-14 16:55:59 2075

原创 推荐系统专题 | CTR预测跨域处理的解决方案

在最近的华为ctr预测比赛中,一开始首先想到的方法是使用深度学习的方法来解决这个跨域的CTR预测问题。但开始上手的时候会发现其中需要解决很多的细节问题,这里把当时需要处理的细节问题与后来解决的方案记录下来,同时算法的开源地址如下:https://github.com/Clichong/CTR。

2022-09-29 16:56:01 377

原创 Docker | docker容器导出以及常见问题的处理

华为比赛终于告一段落,最后是常见的直接提交整个的docker环境在之前的文章中也简要介绍过。不过在重新的配置过程中,出现了部分错误,用这篇文章来主要。

2022-09-29 15:52:23 271

原创 MMDetection系列 | 5. MMDetection运行配置介绍

开门见山,基于mmdet的官方文档直接介绍如何进行我们的运行配置。个人觉得,继承于`default_runtime.py`这个文件之后,主要需要自己稍微更改下的配置主要有7个,分别是:**优化器配置、学习率配置、工作流程配置、检查点配置、日志配置、评估配置、训练设置**。具体的配置流程如下所示。如果需要其他钩子函数的实现与配置,具体可以查看参考资料1.

2022-09-17 22:01:58 773

原创 MMDetection系列 | 4. MMDetection模型代码训练及测试过程的详细解析

用这篇博客来详细记录mmdetection的配置的详细结构。个人认为,只有了解了其结构的组成与实现,才可以更加灵活的调用与修改。在此基础上,本文主要针对 Model 模块中最为复杂的Head部分进行详解。这篇博客是在官方的参考资料上增加了我自己理解的一些补充,以作为后续翻阅的笔记。

2022-09-16 22:40:45 1021

原创 MMFewShot训练与测试流程

以下内容以训练few-shot的tfa模型为例,其中的tfa是一个小样本的目标检测模型。大致介绍如何使用MMFewShot,进行模型的训练(或者微调),以及推理验证。

2022-09-11 15:12:12 894

原创 MMDetection系列 | 3. MMDetection自定义模型训练

在去年MLP-Mixer出来之后,出现过一段短时间内的高潮,我也将相关的MLP结构全部的复现了一遍。不过当时苦于只能跑分类数据集,不能简单的将网络结构移植到其他的下游任务,只能作罢。后来了解了MMDetection,这个一个集成的开源目标检测框架。主旨是让我们能够比较方便的测试我们自己设计的结构。不过,缺点就是,框架封装得太多,不好细改,也难以调试。但是优点是替换结构方便。网上关于MMDetection的资料还比较少,这篇博客也算是我踩了比较多的坑多得到的结果。

2022-09-11 14:43:06 671

原创 MMDetection系列 | 2. MMDetection自定义数据集训练

这篇博客是关于如何使用MMDetection训练自己的数据集,这里我使用的Kaggle的一个口罩数据集,本来是xml格式的,然后之前使用的是yolov5进行训练,所以将xml格式转换成了txt格式。现在使用MMDetection需要将其转换成coco格式,详细过程如下。

2022-09-08 12:07:52 974

原创 MMDetection系列 | 1. MMDetection安装流程与测试

这篇博客记录安装mmdetection的过程,以及记录对公共数据集进行推理测试与训练的简单使用。

2022-09-06 22:58:53 610 1

原创 Anaconda的安装与卸载

最近有实验室有新的服务器,需要重新配置环境。之前记录过深度学习环境,现在补充一下管理虚拟环境的Anaconda的安装过程。

2022-09-02 11:11:37 473 1

原创 YOLOv5的Tricks | 【Trick15】使用COCO API评估模型在自己数据集的结果

如有错误,恳请指出。在解析yolov5整个工程项目的时候要,已经对其detect.py脚本和val.py脚本进行分别的解析。其中,个人觉得detect脚本写得过于冗杂,所以分别为每个任务(图片推理,视频推理,摄像头推理)单独的写了个简单易懂的推理脚本。在之前在解析完val.py脚本之后,一直想同样地对其进行简化,现在用这篇博客来记录简化过程以及出现的问题。一般来说,现有的标注格式就是xml格式,yolo的txt格式还有coco的json标注特殊,我们使用yolov5项目来说标注文件就是一堆txt文件,文件名

2022-08-29 21:12:38 1611 6

原创 YOLOv7 | 模型结构与正负样本分配解析

贴的源码有点多,导致篇幅有点过长。最后对yolov7做一个总结。总的来说,在模型的结构上,yolov7的模型搭建延续了yolov5的手法,提出了ELAN的一个新颖concat结构和一个新颖的MP降维结构。同时,在部分版本中使用上了Rep结构(将3x3卷积,1x1卷积,残差链接)拓扑组合在一起。对于正负样本的匹配上,使用了yoloX的SimOTA匹配方法,与yolov5的匹配方法进行融合。也就是simOTA中的第一步“使用中心先验”替换成“yolov5中的策略”,提供了更加精确的先验知识。...

2022-08-28 12:24:04 2767 3

原创 YOLOv6 | 模型结构与训练策略详细解析

消融实验效果对比yolov6的实验对比更加偏向于轻量级模型的对比。对yolov6的提出,我主要从两个方面去做总结,一个是模型上的改进,另外一个是训练策略上的改进。但是可以看见,无论是模型上的改进还是训练策略上的改进并没有提出一些比较新颖的见解。对于网络结构上的改进,主要是利用了重结构化的思想改进了yolov5的框架,同时将head进行参数的完全独立不共享(这样做可能会有效,但是感觉增加了很大的参数量)。而参数重结构化可以使得推理过程的速度加快,改变网络的拓扑结构。...

2022-08-26 21:43:26 1428 1

原创 YOLOv5的Tricks | 【Trick14】YOLOv5的val.py脚本的解析

如有问题,恳请指出。这篇可能是这个系列最后的一篇了,最后把yolov5的验证过程大致的再介绍介绍,基本上把yolov5的全部内容就稍微过了一遍了,也是我自己对这个项目学习的结束。(补充一下,这里我介绍的yolov5-6.0版本的代码)这个脚本主要分为是三个部分:主体代码运行部分 + 指标计算部分 + 绘图部分,这里就主要介绍前两个部分的内容。细节比较多,比上一篇的detect.py脚本复杂很多,这里写得困难逻辑也不会很清晰,简单做个记录,方便日后自己回忆。在训练阶段每个batch训练结束后,都会调用一次va

2022-08-12 21:09:10 2396 6

原创 YOLOv5的Tricks | 【Trick13】YOLOv5的detect.py脚本的解析与简化

如有错误,恳请指出。在之前介绍了一堆yolov5的训练技巧,train.py脚本也介绍得差不多了。之后还有detect和val两个脚本文件,还想把它们总结完。在之前测试yolov5训练好的模型时,用detect.py脚本简直不要太方便,觉得这个脚本集成了很多功能,今天就分析源码一探究竟。关于如何使用yolov5来训练自己的数据集在之前已经写了一篇文章记录过:yolov5的使用 | 训练Pascal voc格式的数据集,所以在这篇文章中就主要分析源码,再稍微提及一下detect的可用参数。对于测试的都会存放在

2022-08-10 22:55:25 1618 2

KITTI数据集的可视化项目

vis/lidar_vis.py:提供查看.bin格式点云的可视化 vis/bev_vis.py:提供查看.bin格式点云的bev视图 vis/visualization.py:使用kitti_object_vis项目,提供kitti数据集的9中可视话操作

2022-10-16

使用RNN与LSTM实现的5个应用

1)使用RNN网络来预测正弦方波 2)使用LSTM网络来预测周期性的航班数据 3)使用LSTM网络来对文本分类 4)使用LSTM网络来对图像分类 5)使用LSTM网络来生成手写数字图像

2022-05-12

利用可训练参数在线辅助知识蒸馏

利用可训练参数在线辅助知识蒸馏

2022-03-19

ResNet与ResNeXt的pytorch实现

def ResNet18(): return ResNet(resnet18_params, BasicBlock) def ResNet34(): return ResNet(resnet34_params, BasicBlock) def ResNet50(): return ResNet(resnet50_params, Bottleneck) def ResNet101(): return ResNet(resnet101_params, Bottleneck) def ResNet152(): return ResNet(resnet152_params, Bottleneck) def ResNeXt50_32x4d(): return ResNet(resnext50_32x4d_params, ResNeXtBlock) def ResNeXt101_32x8d(): return ResNet(resnext101_32x8d_params, ResNeXtBlock)

2021-05-15

stm8智能跟随避障小车(超声波测距+1602显示+app蓝牙通信+TTS播报+pwm调速)

设计制作一辆玩具小车,此小车系统可具有以下功能: 基本功能: 1)主控芯片可以采用单片机裸机运行程序,也可以采用嵌入式系统。核心 板可以采用现成的单片机最小系统板或者实验板搭建。 2)小车采用轮式驱动,直流电机驱动模块可采用现成的模块或者自行设计。 3)小车可以通过蓝牙模块与手机相连接,通过手机 app 软件来控制小车的 运动方向以及相关功能。蓝牙模块与手机软件可采用现成模块。 4)小车配备有超声波模块,可以通过超声波模块检测前方障碍物的距离, 并在 10cm 的距离停车,距离显示可以显示在车体处的小屏幕,也可以显示 在手机 app 上。 5)小车可配备红外线对管,通过红外对管完成在白底黑线的

2020-12-23

数字温度计--DB18B20获取温度+lcd1602显示+串口输出

功能要求:选用STM8型单片机作为主控制器件,DS18B20作为测温传感器,通过LCD1602实现温度显示。通过DS18B20直接读取被测温度值,进行数据转换,该器件的物理化学性能稳定,线性度较好,在0℃~100℃最大线性偏差小于0.01℃。利用该器件直接向单片机传输数字信号,使用单片机处理及控制。可设置的上下限温度报警。 要求完成内容: 1.根据设计要求,完成电路硬件设计,并绘制出原理图。 2.完成系统的安装与硬件调试 3画出流程图,编写并调试控制程序。 4撰写设计报告。

2020-12-23

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除