关闭

三维表面重建robust algorithm for surface reconstruction from 3D point cloud

511人阅读 评论(1) 收藏 举报
分类:

转自:https://stackoverflow.com/questions/838761/robust-algorithm-for-surface-reconstruction-from-3d-point-cloud

I am trying to figure out what algorithms there are to do surface reconstruction from 3D range data. At a first glance, it seems that the Ball pivoting algorithm (BPA) and Poisson surface reconstruction are the more established methods?

  • What are the established, more robust algorithm in the field other than BPA and Poisson surface reconstruction algorithm?
  • Recommended research publications?
  • Is there available source code?

I have been facing this dilemma for some months now, and made exhaustive research.

Algorithms

Mainly there are 2 categories of algorithms: computation geometry, and implicit surfaces.

Computation Geometry

They fit the mesh on the existing points.

Probably the most famous algorithm of this group is powercrust, because it is theoretically well-established - it guarantees watertight mesh.

Ball Pivoting is patented by IBM. Also, it is not suitable for pointclouds with varying point density.

Implicit functions

One fits implicit functions on the pointcloud, then uses a marching-cube-like algorithm to extract the zero-set of the function into a mesh.

Methods in this category differ mainly by the different implicit functions used.

Poisson, Hoppe's, and MPU are the most famous algorithms in this category. If you are new to the topic, i recommend to read Hoppe's thesis, it is very explanatory.

The algorithms of this category usually can be implemented so that they are able to process huge inputs very efficiently, and one can scale their quality<->speed trade-off. They are not disturbed by noise, varying point-density, holes. A disadvantage of them is that they require consistently oriented surface normals at the input points.

Implementations

You will find small number of free implementations. However it depends on whether You are going to integrate it into free software (in this case GPL license is acceptable for You) or into a commercial software (in this case You need a more liberal license). The latter is very rare.

One is in VTK. I suspect it to be difficult to integrate (no documentation is available for free), it has a strange, over-complicated architecture, and is not designed for high-performance applications. Also has some limitations for the allowed input pointclouds.

Take a look at this Poisson implementation, and after that share your experience about it with me please.

Also: here are a few high-performance algorithms, with surface reconstruction among them.

CGAL is a famous 3d library, but it is free only for free projects.Meshlab is a famous application with GPL.

Also (Added August 2013):The library PCL has a module dedicated to surface reconstruction and is in active development (and is part of Google's Summer of Code). The surface module contains a number of different algorithms for reconstruction. PCL also has the ability to estimate surface normals, incase you do not have them provided with your point data, this functionality can be found in the features module. PCL is released under the terms of the BSD license and is open source software, it is free for commercial and research use.

You may also be interested in A Benchmark for Surface Reconstruction which is a SIGGRAPH paper that include source code, at least some of which is BSD license.

If you want make some direct experiments with various surface reconstruction algorithms you should try MeshLab, the mesh-processing system, it is open source and it contains implementations of many of the previously cited surface reconstruction algorithms, like:

  • Poisson Surface Recon
  • a couple of MLS based approach,
  • a ball pivoting implementation
  • a variant of the Curless volume based approach
  • Delaunay based techniques (Alpha shapes and Voronoi filtering)
  • tools for computing normals from scattered point sets
  • and many other tools for comparing/measuring/cleaning/simplifying the resulting meshes.

Sources are protected by GPL, so you could not use them in a commercial closed source project, but it is very important to get the right feeling about the properties of the various surface reconstruction algorithms (how sensitive to noise they are, the speed, the robustness to outliers, how they preserve fine details etc etc) before starting to implement one of them.

You might start looking at some recent work in the field - currently something like Fast low-memory streaming MLS reconstruction of point-sampled surfaces by Gianmauro Cuccuru, Enrico Gobbetti, Fabio Marton, Renato Pajarola, and Ruggero Pintus. Its citations can get you going through the literature pretty quickly.

Here on GitHub, is a open source Mesh Processing Library in C++ by Dr. Hugues Hoppe, in which the surface reconstruction program Recon is a good option for your problem...

As I had this problem too, I did develop and implement my own point cloud crust algorithm. The sources as well as the documentation can be found on github.com: https://github.com/ricebean-net/PointCloudCrust. The algorithm is implemented in Java.

Maybe, this can help you. You can find also a short python script on the page which illustrates how to use the library. Have fun!


0
0
查看评论

三维人脸研究

摘自:  三维人脸研究   三维人脸研究现状: 传统的人脸识别方法是基于二维图像分析的理论进行人脸的表示、分析、提取特征并进行分类识别。虽然基于二维图像的人脸识别算法在半个多世纪的研究过程中,取得了丰硕的成果,但是研究表明,基于二维图像分析的人脸识别方法受...
  • niepengpeng333
  • niepengpeng333
  • 2012-05-28 17:47
  • 4793

CT图像的三维表面重建

对于医学图像的处理,
  • wangrongbuaa
  • wangrongbuaa
  • 2014-09-29 20:35
  • 3068

PCL: Surface模块之GridProjection表面重建

参考文献: 关于此类的详细信息和学术上的理论推导大家可以查看RuosiLi的文章“Polygonizing Extremal Surfaces with ManifoldGuarantees”。
  • u012337034
  • u012337034
  • 2014-07-21 11:15
  • 2647

PCL实现泊松表面重建

pcl实现的泊松重建算法,输出为重建后的曲面模型数据。具体内容可以参照文献Possion surface reconstruction.#include pcl/point_types.h> #include pcl/io/pcd_io.h> #include pcl/kdtr...
  • wkxxuanzijie920129
  • wkxxuanzijie920129
  • 2016-05-14 08:49
  • 2270

人脸3D重建:Cascaded Regressor

《Cascaded Regressor based 3D Face Reconstruction from a Single Arbitrary View Image》论文解读本文来自四川大学,论文原文: https://arxiv.org/abs/1509.06161v1 人脸3D重建就是从一...
  • tinyzhao
  • tinyzhao
  • 2016-12-14 15:58
  • 2403

【论文笔记】3D人脸重建_简略版(时时更新中)

201601161. Zhu X, Lei Z, Yan J, et al. High-Fidelity Pose and Expression Normalization for Face Recognition in the Wild[C]//Proceedings of the IEEE Co...
  • shaoxiaohu1
  • shaoxiaohu1
  • 2016-02-21 15:01
  • 3060

三维重建技术概述

基于视觉的三维重建,指的是通过摄像机获取场景物体的数据图像,并对此图像进行分析处理,再结合计算机视觉知识推导出现实环境中物体的三维信息。1. 相关概念(1)彩色图像与深度图像彩色图像也叫作RGB图像,R、G、B三个分量对应于红、绿、蓝三个通道的颜色,它们的叠加组成了图像像素的不同灰度级。RGB颜色空...
  • wangyaninglm
  • wangyaninglm
  • 2016-06-01 22:29
  • 25782

RGB-D实时重建那点事

该博客内容发表在泡泡机器人公众号上,请尊重泡泡机器人公众号的版权声明。基于RGB-D的三维重建要从RGB-D相机说起,微软早在2010年就把Kinect折腾出来了,2011年发布了Kinect SDK,2012年发布了可以用来做开发的Kinect版本(可以拿来做学术研究),2011年SIGGRAPH...
  • fuxingyin
  • fuxingyin
  • 2017-02-28 19:18
  • 3163

qianyi-zhou offline RGB-D 三维重建(2)

这篇博客先介绍“Elastic Fragments for Dense Scene Reconstruction”,后续再介绍比较相关的一篇文章。
  • fuxingyin
  • fuxingyin
  • 2016-10-27 12:33
  • 1506

MATLAB: 3d reconstruction using eight point algorithm

I am trying to achieve 3d reconstruction from 2 images. Steps I followed are, 1. Found corresponding points between 2 images using SURF. 2. Imp...
  • kangdehua
  • kangdehua
  • 2016-09-21 13:44
  • 198
    个人资料
    • 访问:552586次
    • 积分:7229
    • 等级:
    • 排名:第3694名
    • 原创:75篇
    • 转载:538篇
    • 译文:1篇
    • 评论:91条
    最新评论