自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(78)
  • 资源 (1)
  • 收藏
  • 关注

原创 端到端 - UniAD: Planning-oriented Autonomous Driving - 以规划为导向的自动驾驶(CVPR 2023)

现代自动驾驶系统的特点是按顺序执行模块化任务,即感知、预测和规划。为了执行各种各样的任务并实现高级智能,当代方法要么为单个任务部署独立模型,要么设计一个具有独立头部的多任务范式。然而,他们可能会出现累积错误或任务协调不足。相反,我们认为应该设计并优化一个有利的框架,以实现最终目标,即自动驾驶汽车的规划。为此,我们重新审视了感知和预测中的关键组成部分,并对任务进行了优先级排序,以便所有这些任务都有助于规划。

2024-08-23 16:17:16 1107

原创 VS Code(Visual Studio Code)本地(local)和远程(ssh)Docker Container 下的 Python 开发和调试

VS Code,全称Visual Studio Code,是一款由微软开发的跨平台免费源代码编辑器。它可以在Windows、macOS和Linux等多个操作系统上运行,并且提供了丰富的功能和扩展支持。VS Code支持语法高亮、代码自动补全(又称IntelliSense)、代码重构、查看定义功能,并且内置了命令行工具和Git版本控制系统。用户可以通过更改主题和键盘快捷方式实现个性化设置,也可以通过内置的扩展程序商店安装扩展以拓展软件功能。VS Code使用Monaco Editor作为其底层的代码编辑器。

2024-02-28 17:45:00 1778 6

原创 NVIDIA TensorRT 简介及使用

NVIDIA® TensorRT™是高性能深度学习推理的SDK,包括深度学习推理优化器和运行时,可为推理应用程序提供低延迟和高吞吐量。

2023-10-24 19:55:01 757

原创 人工智能(AI)基础知识学习库

典型的应用场景—语音助手。计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。数学是人工智能(AI)领域非常重要的基本技能,机器学习的过程相当于求解数学问题的过程。人工智能(AI)时代,人人都需要了解一些人工智能的基础知识,这些基础的知识可以帮助我们理解这个新时代,跟上这个新时代。深度学习是当前最热门的领域,这个专题将介绍深度学习的概念,应用和一些典型算法。

2023-10-06 19:51:13 2148

原创 图像 检测 - PETR: Position Embedding Transformation for Multi-View 3D Object Detection (ECCV 2022)

在本文中,我们开发了用于多视图3D目标检测的位置嵌入变换(PETR)。PETR将3D坐标的位置信息编码为图像特征,产生3D位置感知特征。目标查询可以感知3D位置感知特征并执行端到端的目标检测。PETR在标准nuScenes数据集上实现了最先进的性能(50.4%的NDS和44.1%的mAP),并在基准测试中排名第一。它可以作为未来研究的一个简单而有力的基线。代码在https://github.com/megvii-research/PETR.关键词:位置嵌入,transformer,3D目标检测。

2023-08-06 20:47:44 1244

原创 图像 跟踪 - MOTRv2: Bootstrapping End-to-End Multi-Object Tracking by Pretrained Object ... (CVPR 2023)

在本文中,我们提出了MOTRv2,这是一种简单而有效的管道,用于使用预训练的目标检测器引导端到端多目标跟踪。现有的端到端方法,如MOTR[43]和TrackFormer[20],主要由于其较差的检测性能而不如检测再跟踪的对手。我们的目标是通过优雅地加入一个额外的目标检测器来提高MOTR。我们首先采用查询的锚点公式,然后使用额外的目标检测器生成建议作为锚点,在MOTR之前提供检测。简单的修改大大缓解了MOTR中联合学习检测和关联任务之间的冲突。MOTRv2保持了查询传播功能,并在大规模基准测试上扩展良好。

2023-08-06 17:41:23 1591

原创 GANet: A Keypoint-based Global Association Network for Lane Detection (CVPR 2022)

车道检测是一项具有挑战性的任务,需要预测车道线的复杂拓扑形状并同时区分不同类型的车道。早期的工作遵循自上而下的路线图,将预定义的锚回归到各种形状的车道线中,由于锚的形状固定,因此缺乏足够的灵活性来适应复杂形状的车道。最近,一些工作提出将车道检测公式化为一个关键点估计问题,以更灵活地描述车道线的形状,并以逐点的方式逐渐对属于同一车道线的相邻关键点进行分组,这在后处理过程中效率低且耗时。

2023-08-06 17:31:15 746

原创 图像 检测 - FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection (ICCVW 2021)

单目3D目标检测具有成本低的优点,是自动驾驶的一项重要任务。由于其固有的不适定性,它比传统的2D情况更具挑战性,这主要反映在缺乏深度信息上。2D检测的最新进展为更好地解决这个问题提供了机会。然而,使通用的2D检测器在该3D任务中工作是不平凡的。在本文中,我们通过建立在全卷积单级检测器上的实践来研究这个问题,并提出了一个通用框架FCOS3D。具体来说,我们首先将通常定义的7-DoF 3D目标转换到图像域,并将其解耦为2D和3D属性。

2023-08-06 17:22:53 481

原创 图像 检测 - DETR: End-to-End Object Detection with Transformers (arXiv 2020)

我们提出了一种新的方法,将目标检测视为一个直接集预测问题。我们的方法简化了检测流程,有效地消除了对许多手工设计的组件的需求,如非最大值抑制程序或锚生成,这些组件对我们关于任务的先验知识进行了明确编码。新框架称为DEtection TRansformer或DETR,其主要组成部分是基于集合的全局损失,通过二分匹配强制进行唯一预测,以及transformer 编码器-解码器架构。给定一组固定的学习目标查询,DETR对目标和全局图像上下文的关系进行推理,以直接并行输出最终的预测集。

2023-08-06 17:13:17 1812 2

原创 图像 检测 - RetinaNet: Focal Loss for Dense Object Detection (arXiv 2018)

迄今为止,最高精度的目标检测器是基于R-CNN推广的两阶段方法,其中将分类器应用于候选目标位置的稀疏集。相比之下,对可能的目标位置进行定期、密集采样的单级检测器有可能更快、更简单,但迄今为止的精度落后于两级检测器。在本文中,我们调查了为什么会出现这种情况。我们发现,在密集检测器的训练过程中遇到的极端前景-背景类不平衡是主要原因。我们建议通过重塑标准交叉熵损失来解决这种类别不平衡问题,使其对分配给分类良好的示例的损失进行加权。

2023-08-06 16:59:41 841

原创 图像 处理 - 开源算法集合

标题开源代码标题开源代码。

2023-08-06 16:25:15 408

原创 图像 分割 - Fast-SCNN: Fast Semantic Segmentation Network (arXiv 2019)

编码器-解码器框架是用于离线语义图像分割的最先进的框架。随着自主系统的兴起,实时计算越来越受欢迎。在本文中,我们介绍了快速分割卷积神经网络(Fast-SCNN),这是一种针对高分辨率图像数据(1024×2048px)的实时语义分割模型,适用于低内存嵌入式设备上的高效计算。在现有的两种快速分割分支方法的基础上,我们引入了我们的“学习下采样”模块,该模块同时计算多个分辨率分支的低级特征。

2023-08-04 10:51:37 994

原创 图像 检测 - YOLOv3: An Incremental Improvement (arXiv 2018)

我们向YOLO提供一些更新!我们做了一些小的设计更改,使它变得更好。我们还训练了这个非常庞大的新网络。它比上次大一点,但更准确。不过还是很快,别担心。在320×320时,YOLOv3在22ms内运行得到28.2mAP,与SSD一样准确,但速度快三倍。当我们看到旧的.5 IOU mAP检测指标YOLOv3是相当好的。在Titan X上,它在51ms内达到57.9 AP50,相比之下,RetinaNet在198毫秒内达到了57.5 AP50,性能相似,但速度快3.8倍。

2023-08-03 12:11:55 429

原创 图像 分割 - U-Net: Convolutional Networks for Biomedical Image Segmentation (MICCAI 2016)

人们普遍认为,深度网络的成功训练需要数千个带注释的训练样本。在本文中,我们提出了一种网络和训练策略,该策略依赖于数据增强的强大使用,以更有效地使用可用的注释样本。该体系结构由捕获上下文的收缩路径和实现精确定位的对称扩展路径组成。我们证明,这种网络可以从极少数图像中进行端到端训练,并且在电子显微镜堆栈中神经元结构分割的ISBI挑战中优于先前的最佳方法(滑动窗口卷积网络)。使用在透射光显微镜图像(相位对比度和DIC)上训练的同一网络,我们在2015年的这些类别中以很大优势赢得了ISBI细胞跟踪挑战。

2023-07-28 17:30:41 382

原创 图像 检测 - FCOS: Fully Convolutional One-Stage Object Detection (ICCV 2019)

我们提出了一种全卷积单级目标检测器(FCOS),以每像素预测的方式解决目标检测,类似于语义分割。几乎所有最先进的目标检测器,如RetinaNet、SSD、YOLOv3和Faster R-CNN,都依赖于预定义的锚框。相比之下,我们提出的检测器FCOS是无锚框的,也是无提案的。通过消除预定义的锚框集合,FCOS完全避免了与锚框相关的复杂计算,例如在训练期间计算重叠。更重要的是,我们还避免了与锚框相关的所有超参数,这些参数通常对最终检测性能非常敏感。

2023-07-28 09:14:50 641

原创 MarkDown、LaTex 公式 语法

(1)嵌入行内,单对。(2)单独成行,双对。

2023-07-09 22:39:20 604

原创 图像 跟踪 - MOTR: End-to-End Multiple-Object Tracking with Transformer (ECCV 2022)

目标的时间建模是多目标跟踪(MOT)中的一个关键挑战。现有方法通过基于运动和基于外观的相似性启发法将检测关联起来进行跟踪。关联的后处理性质防止了视频序列中时间变化的端到端利用。在本文中,我们提出了MOTR,它扩展了DETR[6],并引入了“跟踪查询”来对整个视频中被跟踪的实例进行建模。跟踪查询逐帧传输和更新,以随着时间的推移执行迭代预测。我们提出了tracklet-aware标签分配来训练跟踪查询和新生目标查询。我们进一步提出了时间聚合网络和集体平均损失来增强时间关系建模。

2023-07-07 19:16:49 1513

原创 算力(计算机、芯片、TOPS、DMIPS、MACs等)相关缩写及定义

例如:假设有512MACC运算单元,运行频率为1GHz,INT8的数据结构和精度,算力为512 x 2(2理解为一个MACC为一次乘法和一次加法,为两次运算操作) x 1 GHz = 1000 Billion Operations/Second = 1 TOPS(Tera-Operations/second)。例如,某个模型需要256000个浮点参数定义,转化为bit 乘以32得8192000bit,再除8转化为Byte,1024KB,也就是1M,那么这个模型大小约为1M。

2023-07-05 17:18:11 5821 3

原创 Attention Is All You Need (NIPS 2017)

占主导地位的序列转导模型基于复杂的递归或卷积神经网络,包括编码器和解码器。性能最好的模型还通过注意力机制连接编码器和解码器。我们提出了一种新的简单网络架构,即Transformer,它完全基于注意力机制,完全省去了递归和卷积。在两个机器翻译任务上的实验表明,这些模型在质量上优越,同时更具并行性,并且需要更少的训练时间。我们的模型在WMT 2014英语到德语翻译任务中实现了28.4 BLEU,比现有的最佳结果(包括组合)提高了2个以上BLEU。

2023-06-30 14:49:56 1085

原创 图像 检测 - Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (ICCV 2021)

本文提出了一种新的视觉Transformer,称为Swin Transformer,它可以作为计算机视觉的通用主干。将Transformer从语言改编为视觉的挑战源于这两个领域之间的差异,例如视觉实体的尺度变化很大,以及与文本中的单词相比,图像中的像素分辨率很高。为了解决这些差异,我们提出了一种层次Transformer,其表示是用移位窗口计算的。移位开窗方案通过将自注意力计算限制在不重叠的局部窗口上,同时还允许跨窗口连接,从而带来更高的效率。

2023-06-22 15:34:27 444

原创 多模态融合 - BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird‘s-Eye View Repre ... (ICRA 2023)

多传感器融合对于准确可靠的自动驾驶系统至关重要。最近的方法是基于点级融合:用相机特征增强激光雷达点云。然而,相机到激光雷达的投影丢弃了相机特征的语义密度,阻碍了这种方法的有效性,尤其是对于面向语义的任务(如3D场景分割)。在本文中,我们用BEVFusion打破了这一根深蒂固的惯例,BEVFusions是一种高效通用的多任务多传感器融合框架。它在共享鸟瞰图(BEV)表示空间中统一了多模态特征,很好地保留了几何和语义信息。

2023-06-19 23:20:57 2216

原创 图像 分割 - DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution for Semantic ... (ECCV 2018)

空间金字塔池化模块或编码解码器结构用于深度神经网络中的语义分割任务。前一种网络能够通过以多个速率和多个有效视场使用滤波器或池化操作来探测传入特征,从而对多尺度上下文信息进行编码,而后一种网络可以通过逐渐恢复空间信息来捕捉更清晰的目标边界。在这项工作中,我们建议将这两种方法的优点结合起来。具体而言,我们提出的模型DeepLabv3+通过添加一个简单而有效的解码器模块来细化分割结果,特别是沿着目标边界的分割结果,从而扩展了DeepLabv3。

2023-06-16 19:24:49 1435

原创 图像 检测 - CenterNet: Objects as Points (arXiv 2019)

检测将目标识别为图像中的轴对齐框。大多数成功的目标检测器列举了一个几乎详尽的潜在目标位置列表,并对每个位置进行分类。这是浪费、低效的,并且需要额外的后处理。在本文中,我们采取了不同的方法。我们将目标建模为单个点,即其边界框的中心点。我们的检测器使用关键点估计来找到中心点,并回归到所有其他目标属性,如大小、3D位置、方向,甚至姿势。我们的基于中心点的方法CenterNet是端到端可微,比相应的基于边界框的检测器更简单、更快、更准确。

2023-06-16 00:05:06 1072

原创 Python 标准库 - 并发执行

Python 标准库非常庞大,所提供的组件涉及范围十分广泛,官方参考链接。这个库包含了多个内置模块 (以 C 编写),Python 程序员必须依靠它们来实现系统级功能,例如文件 I/O,此外还有大量以 Python 编写的模块,提供了日常编程中许多问题的标准解决方案。我们通常在 Python 上进行算法开发,因为 Python 编程方便,易于快速验证算法。而在验证算法正确后,如果对运行效率有更高要求的话,则会将计算密集的模块使用多线程 / 多进程来执行,来达到代码运行效率加速的效果。

2023-06-14 14:59:09 738

原创 Python 和 C++ 混合编程:pybind11 使用

代码链接文档链接pybind11 是一个轻量级的只包含头文件的库,它在Python中公开C++类型,反之亦然,主要用于创建现有C++代码的Python绑定。它的目标和语法类似于David Abrahams的优秀Boost.Python库:通过使用编译时内省推断类型信息,最大限度地减少传统扩展模块中的样板代码。

2023-06-07 19:08:30 5312 4

原创 点云 3D 天气数据增强 - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation ... (arXiv 2021)

基于激光雷达的目标检测器是自动驾驶汽车等自动导航系统中3D感知管道的关键部分。然而,众所周知,由于信噪比(SNR)和信底比(SBR)降低,它们对雨、雪和雾等不利天气条件敏感。因此,根据正常天气下捕获的数据训练的基于激光雷达的目标检测器在这种情况下往往表现不佳。然而,在各种不利天气条件下收集和标记足够的训练数据既费力又昂贵。为了解决这个问题,我们提出了一种基于物理的方法来模拟不利天气条件下场景的激光雷达点云。然后,这些增强的数据集可以用于训练基于激光雷达的检测器,以提高其全天候可靠性。

2023-06-01 18:50:17 1215 2

原创 点云 3D 天气数据增强 - Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in ... (ICCV 2021)

这项工作解决了雾天中基于激光雷达的3D目标检测的挑战性任务。在这样的场景中收集和注释数据是非常耗时、费力和成本密集的。在本文中,我们通过将物理上精确的雾模拟到晴朗的天气场景中来解决这个问题,以便在晴朗的天气中捕获的大量现有真实数据集可以重新用于我们的任务。我们的贡献有两方面:1)我们开发了一种适用于任何LiDAR数据集的物理有效雾模拟方法。这使得无需额外费用即可获取大规模雾状训练数据。这些部分合成的数据可用于提高几种感知方法的鲁棒性,例如3D目标检测和跟踪或同步定位和建图。

2023-03-16 19:02:50 1624 1

原创 Corner Cases for Visual Perception in Automated Driving: Some Guidance on Detection ... (arVix 2021)

自动驾驶已经成为一个主要的话题,不仅在活跃的研究界,而且在主流媒体报道中也是如此。由于深度学习技术的进步,这种智能车辆的视觉感知在过去十年中取得了巨大进步,但仍存在一些挑战。其中一个挑战是发现极端案例。它们是在驾驶过程中发生的意外和未知情况。传统的视觉感知方法通常无法检测到它们,因为在训练过程中没有观察到极端案例。因此,它们的检测是高度安全关键的,检测方法可以应用于大量收集的数据,以选择合适的训练数据。

2023-03-08 19:30:12 890

原创 DENSE 数据集 - STF 数据集(CVPR 2020)

多模态传感器流(如相机、激光雷达和雷达测量)的融合在自动驾驶车辆的目标检测中起着关键作用,自动驾驶车辆基于这些输入做出决策。虽然现有的方法在良好的环境条件下利用冗余信息,但它们在恶劣的天气下会失败,因为在这种天气下,传感器流可能会不对称地扭曲。这些罕见的“边缘情况”场景没有在可用的数据集中表示,现有的融合架构也没有设计来处理它们。为了应对这一挑战,我们提出了一个新的多模式数据集,该数据集在北欧行驶超过10000公里后采集。

2023-02-15 16:55:23 3384 20

原创 点云 3D 天气数据增强 - LiDAR Snowfall Simulation for Robust 3D Object Detection (CVPR 2022)

3D目标检测是自动驾驶等应用程序的中心任务,在自动驾驶系统中,即使在恶劣天气的情况下,系统也需要对周围的交通代理进行定位和分类。在本文中,我们解决了降雪条件下基于激光雷达的3D目标检测问题。由于在此设置中收集和注释训练数据的困难,我们提出了一种基于物理的方法来模拟降雪对真实晴朗天气LiDAR点云的影响。我们的方法对每个激光雷达线在二维空间中的雪粒子进行采样,并使用诱导的几何结构相应地修改每个激光雷达光束的测量值。此外,由于降雪经常导致地面潮湿,我们还模拟了激光雷达点云的地面湿度。

2023-02-10 11:22:46 1605

原创 Anomaly Detection in Autonomous Driving: A Survey - 自动驾驶中的异常检测:一项调查 (CVPRW 2022)

如今,自动驾驶汽车在我们的道路上朝着未来迈出了卓越的步伐。尽管自动驾驶汽车在封闭条件下表现良好,但它们仍难以应对意外情况。这项调查提供了基于相机、激光雷达、雷达、多模态和抽象目标级数据的异常检测技术的广泛概述。我们提供了一个系统化,包括检测方法、边界情况级别、在线应用程序的能力和其他属性。我们概述了最新技术,并指出了当前的研究差距。

2023-02-05 22:28:31 1886

原创 神经网络(模型)量化介绍 - PTQ 和 QAT

量化主要是一种加速推理的技术,量化运算符仅支持前向传递。量化是指使用精度较低的数据进行计算和内存访问的技术,与浮点实现相比,通常是 int8。模型尺寸缩小 4 倍;内存带宽减少 2-4 倍;由于内存带宽的节省和使用 int8 算法的更快计算,推理速度提高了 2-4 倍(确切的加速取决于硬件、运行时和模型)。然而,量化并非没有额外代价。从根本上说,量化意味着引入近似值,由此产生的网络精度略低。这些技术试图最小化完整浮点精度和量化精度之间的差距。

2023-02-03 17:22:28 8614 14

原创 Deep Learning for 3D Point Clouds: A Survey - 3D点云的深度学习:一项调查 (IEEE TPAMI 2020)

由于点云学习在计算机视觉、自动驾驶和机器人等许多领域的广泛应用,点云学习最近引起了越来越多的关注。作为人工智能中的一项主要技术,深度学习已经成功地用于解决各种2D视觉问题。然而,由于使用深度神经网络处理点云所面临的独特挑战,点云的深度学习仍处于起步阶段。最近,点云上的深度学习变得更加繁荣,有许多方法被提出来解决这一领域的不同问题。为了促进未来的研究,本文全面回顾了点云深度学习方法的最新进展。它包括三个主要任务,包括3D形状分类、3D目标检测和跟踪以及3D点云分割。

2023-02-02 12:30:35 1818

原创 点云 3D 目标跟踪 - SimTrack(ICCV 2021)

LiDAR点云中的3D多目标跟踪是自动驾驶车辆的关键组成部分。现有方法主要基于tracking-by-detection的管道,并且不可避免地需要用于检测关联的启发式匹配步骤。在本文中,我们提出了SimTrack,通过提出一个端到端可训练的模型来从原始点云进行联合检测和跟踪,从而简化了手工制作的跟踪范式。我们的关键设计是预测给定片段中每个目标的首次出现位置,以获得跟踪身份,然后基于运动估计更新位置。在推理中,启发式匹配步骤可以通过简单的读取操作完全放弃。

2023-01-31 15:16:21 3164

原创 点云 3D 目标检测 - RangeDet(ICCV 2021)

在本文中,我们提出了一种基于无锚单级激光雷达的3D目标检测器——RangeDet。与以前的工作最显著的区别是,我们的方法完全基于距离视图表示。与常用的体素化或鸟瞰图(BEV)表示相比,距离视图表示更紧凑,没有量化误差。尽管有工作将其用于语义分割,但其在目标检测中的性能在很大程度上落后于体素化或BEV对应物。我们首先分析了现有的基于距离视图的方法,并发现了先前工作中忽略的两个问题:1)附近和远处目标之间的尺度变化;2) 特征提取中使用的2D距离图像坐标与输出中使用的3D笛卡尔坐标之间的不一致。

2023-01-30 11:34:56 2240

原创 点云 3D 分割 - RangeNet++(IROS 2019)

自动驾驶汽车中的感知通常通过一套不同的感知模式进行。鉴于大量公开可用的标记RGB数据以及用于基于图像的识别的高质量深度学习算法的出现,高级语义感知任务主要使用高分辨率相机来解决。因此,其他可能对该任务有用的传感器模态通常被忽略。在本文中,我们推进了仅LiDAR语义分割的最新技术,以便为车辆提供另一个独立的语义信息源。我们的方法可以在传感器帧速率下准确地执行LiDAR点云的完全语义分割。我们利用距离图像作为中间表示,结合卷积神经网络(CNN)利用旋转激光雷达传感器模型。

2023-01-27 21:01:52 1678

原创 Autonomous Driving in Adverse Weather Conditions: A Survey - 恶劣天气条件下的自动驾驶:一项调查 (arXiv 2021)

自动驾驶系统(ADS)为汽车行业开辟了一个新领域,为未来的交通运输提供了更高的效率和舒适的体验。然而,恶劣天气条件下的自动驾驶一直是阻碍自动驾驶车辆(AVs)长期达到4级或更高自主性的问题。本文以分析和统计的方式评估了天气给ADS传感器带来的影响和挑战,并调查了针对恶劣天气条件的解决方案。关于每种天气的感知增强的最新技术得到了全面报道。外部辅助解决方案,如V2X技术、当前可用数据集中的天气条件覆盖范围、模拟器和带有气象室的实验设施都得到了明确的分类。

2023-01-19 19:34:06 63246

原创 点云 3D 分割 - SqueezeSegV2(ICRA 2019)

早期的工作证明了基于深度学习的点云分割方法的前景;然而,这些方法需要改进,以使其实用。为此,我们引入了一个新模型SquezeSegV2,它对LiDAR点云中的脱落噪声更为鲁棒。通过改进的模型结构、训练损失、批量标准化和额外的输入通道,SquezeSegV2在实际数据上训练时实现了显著的准确性提高。用于点云分割的训练模型需要大量标记的点云数据,这很难获得。为了避免收集和注释的成本,可以使用GTA-V等模拟器来创建无限量的标记合成数据。然而,由于领域转移,基于合成数据训练的模型通常不能很好地推广到现实世界。

2022-12-31 17:53:06 1444 1

原创 点云 3D 分割 - SqueezeSeg(ICRA 2018)

在本文中,我们讨论了3D激光雷达点云中道路对象的语义分割。特别是,我们希望检测和分类感兴趣的实例,例如汽车、行人和骑自行车的人。我们将此问题表述为逐点分类问题,并提出了一种基于卷积神经网络(CNN)的端到端流水线SquezeSeg:CNN将转换后的LiDAR点云作为输入,并直接输出逐点标签图,然后通过实现为递归层的条件随机场(CRF)对其进行细化。然后通过常规聚类算法获得实例级标签。我们的CNN模型是在KITTI[1]数据集的LiDAR点云上训练的,我们的逐点分割标签来自KITTI的3D边界框。

2022-12-30 21:29:04 1526

原创 点云 3D 目标检测 - SECOND(Sensors 2018)

基于LiDAR或RGB-D的目标检测被用于从自动驾驶到机器人视觉的许多应用中。基于体素的3D卷积网络已被用于在处理点云LiDAR数据时增强信息的保留。然而,问题仍然存在,包括推理速度慢和方向估计性能低。因此,我们研究了一种用于此类网络的改进的稀疏卷积方法,该方法显著提高了训练和推理的速度。我们还引入了一种新的角度损失回归形式来提高方向估计性能,并引入了一个新的数据增强方法来提高收敛速度和性能。所提出的网络在KITTI 3D目标检测基准上产生最先进的结果,同时保持快速推断速度。

2022-12-29 14:48:57 2102 1

EasyUEFI 软件( 免费版 + 试用版 )

EasyUEFI 软件( 免费版 + 试用版 )由于是国外软件,在国内下载速度很慢或者无法下载,所以上传已下载好的 EasyUEFI 软件

2020-08-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除