【深度学习-tensorflow】CUDA + Anaconda + tensorflow + PyCharm
研究生期间的第一学年,机器学习和深度学习的氛围很浓,包括各种学术报告,各种讲座,还有老师课上的经验之谈。这学期的《机器学习》课程中,王老师提到了【深度学习】的重要性,并告诉我们,“如果不懂得深度学习,那么将来工作都不好找了”(应该是因为我们是计算机系的硕士学生,想让我们找到更好的工作)。当然,懂深度学习和用深度学习是两码事。有人说深度学习是一个“黑盒”,目前还没有严谨的数学理论支撑;计算机视觉的老师也跟我们说过,深度学习是给人们带来了方便(深度学习之前的特征很多都需要计算机视觉领域的理论来提前特征,现在深度学习在很多方面能够提取出很好的特征)并且在性能上也得到了很大的提升,但是千万不能脱离理论基础。是的,我们要学会如何使用深度学习,但同时也要掌握相关的理论知识。我的目标也是希望能够学好机器学习的理论知识,更进一步的了解【深度学习】,包括“caffe”和“tensorflow”。在写此博文时,我也还只是个刚要入门的学生,日后也将遇到各种学习和实践上的挑战,希望可以坚持整理和分享学习心得。
本文主要介绍如何在windows系统下基于Anaconda3安装深度学习框架 - GPU版的Tensorflow。本文的主要贡献如下:
- 配置【win7&win10 + CUDA8.0 + CUDNN5.1】的详细流程。
- 通过本人的实践,整理了在windows平台下基于Anaconda配置“tensorflow”的详细流程,遇到的问题及其解决方案。
- 提供了相关工具和插件的下载地址,如pycharm(包括破解方法)。
- 通过实践,整理了一些基于tensorflow相关的案例:包括官网中tensorflow的基本用法,其他CSDN博客整理的MNIST等。
---------------------------------------------------------------
Part 1:CUDA8.0 + CUDNN5.1
这部分主要面向“GPU版本的tensorflow”,如果你只是要用CPU跑深度学习的程序,那么不用安装CUDA和CUDNN,直接根据tensorflow官网或者极客学院翻译的中文教程(“CPU”版本)进行安装即可。此外,这部分配置同样适用于另一个深度学习框架Caffe(GPU版本)的配置。下面来分享一下CUDA8.0和CUDNN5.1的安装流程:
- 检查下你的电脑是否有CUDA_Capable GP(独立显卡),打开cmd或者powershell执行如下语句:
control /name Microsoft.DeviceManager
英伟达独立显卡 GT 755M,比较老的独显了,实验室的是GTX 960
-- 此处介绍一款查看GPU的软件:GPU-Z
- 准备安装包:
1. NVIDIA CUDA Toolkit 8.0:https://developer.nvidia.com/cuda-downloads
2. cuDNN5.1:https://developer.nvidia.com/rdp/cudnn-download
- 安装NVIDIA CUDA Toolkit 8.0:
进入官网下载地址,下载过程如下一系列图示:
下载local版本的exe,local和net版本的介绍如下(摘取至官网)
Network Installer: A minimal installer which later downloads packages required for installation. Only the packages selected during the selection phase of the installer are downloaded. This installer is useful for users who want to minimize download time.
Full Installer:An installer which contains all the components of the CUDA Toolkit and does not require any further download.This installer is useful for systems which lack network access and for enterprise deployment.
直接根据推荐,选择精简版进行下载
选择“安装”NVIDIA Corporation
安装完成,安装路径默认为:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
- 配置环境变量:NVIDIA CUDA Toolkit 8.0
CUDA_PATH:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0
CUDA_BIN_PATH:%CUDA_PATH%\bin
CUDA_LIB_PATH:%CUDA_PATH%\lib\Win32
CUDA_SDK_BIN:%CUDA_SDK_PATH%\bin\Win64
CUDA_SDK_LIB:%CUDA_SDK_PATH%\common\lib\x64
CUDA_SDK_PATH:C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0
在系统环境变量path后添加如下内容
%CUDA_LIB_PATH%;
%CUDA_BIN_PATH%;
%CUDA_SDK_LIB_PATH%;
%CUDA_SDK_BIN_PATH%;
-- 输入【nvcc –V】检测是否安装成功,如下图所示:
- 安装cuDNN5.1:
下载cuDNN得到的是一个压缩包,将安装包解压到【C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0】的目录下,如下图所示:
选择cuDNN v5.1
cuDNN的压缩包
解压到该目录下,自动合并到相应的文件夹内
-- 至此,完成CUDA和cuDNN的安装 --
Part 2:基于Anaconda安装tensorflow
0. 安装tensorflow的核心步骤总结【具体安装请看第3点】:
- 下载并安装Anaconda。
- 打开Anaconda Prompt并执行如下命令,创建名为tensorflow的虚拟环境。
// 基于当前系统环境最优先的python创建tensorflow虚拟环境,例如使用Anaconda自带的python安装时,使用该语句
conda create -n tensorflow
// 指定python版本创建tensorflow虚拟环境,如果系统没有指定的python版本,则会下载python及其相关的插件,如numpy等
conda create -n tensorflow python=3.5
--- 下文会针对这两种方式进行详细的讨论。
- 继续在Anaconda Prompt执行【activate tensorflow】命令,激活tensorflow环境:
- 下载【tensorflow_gpu-1.0.0-cp35-cp35m-win_amd64.whl】文件(下文简称【.whl】文件)并执行如下命令:
// 通过事先下载好的.whl配置tensorflow
pip install --ignore-installed --upgrade tensorflow_gpu-1.0.0-cp35-cp35m-win_amd64.whl
// 通过指定whl的地址配置tensorflow
pip install --ignore-installed --up