文章目录
一、版本说明(CPU + GPU)
详细安装如下:
(1)【CPU版本】Anaconda(Python) + PyCharm + PyTorch(CPU) + OpenCV
(2)【GPU版本】Anaconda(Python) + PyCharm + CUDA + cuDNN + PyTorch(GPU) + OpenCV
附上一整套的安装包,版本已对应,可按需使用。环境配置如下:
- 百度网盘链接:https://pan.baidu.com/s/1GK9YZIk9C_Atk70-QCTCDQ?pwd=9sfh
- 提取码:
9sfh
- b站最全最简洁易学的深度学习环境配置教程:Anaconda + Pycharm + CUDA + CUdnn + PyTorch + Tensorflow
- 最全最简易的保姆教程:深度学习环境配置 Anaconda+Pycharm+CUDA+cuDNN+TensorFlow+PyTorch
二、环境配置
2.0、查看版本号
# - 打开 DOS 命令提示符窗口: WIN + R + cmd
# - 返回 DOS 命令窗口: exit()
# - 切换到指定路径: cd /d C:\Users\Administrator
"""#########################################################################
- 查看安装包的版本信息: pip show numpy(任意安装包)
- 查看Python版本号: python
- 查看Anaconda版本号: conda -V
- 查看CUDA版本号: nvcc -V
查看CUDA安装路径: set cuda
- 查看PyTorch版本号: python -c "import torch; print('Torch 版本:', torch.__version__); print('CUDA 是否可用:', torch.cuda.is_available())"
若未安装将提示: 'python' 不是内部或外部命令,也不是可运行的程序或批处理文件。
若未安装将提示: 'conda' 不是内部或外部命令,也不是可运行的程序或批处理文件。
若未安装将提示: 'nvcc' 不是内部或外部命令,也不是可运行的程序或批处理文件。
若未安装将提示: ModuleNotFoundError:No module named ‘torch’
#########################################################################"""
2.1、Anaconda安装
Anaconda(中文名" 大蟒蛇 ")
:是一个开源的Python发行版本,包含了 conda 包管理器、Python 解释器以及大量科学计算和数据分析软件包(如:NumPy、SciPy、Pandas、Matplotlib、Jupyter 等)。
conda
:是 Anaconda 发行版中的一个包管理器和环境管理器。conda 是 Anaconda 发行版的核心组件之一,但它也可以作为独立的软件包安装在其他 Python 发行版中使用。
- 通过 conda 命令,可以在同一个机器上创建、管理和维护 conda 环境,并能够在不同的环境之间切换。
- 通过 conda 命令,可以安装、更新和删除软件包。
Anaconda官网下载:Anaconda | The World’s Most Popular Data Science Platform。若官网登不上,可以通过镜像站下载。
(1)下载详细过程:
点击Get Additional Installers - 下载电脑对应的版本。
(2)安装详细过程:
Next - I Agree - Next(Just me)- Browse(建议不要安装到C盘) - 两个都勾选(表示将环境变量自动添加到系统变量中) - Install - Next - Next - Finish(都不勾选)。
(3)查看是否安装成功:
WIN +R + cmd + conda -V 或 python
- (1)若安装成功,则显示 conda 版本号,否则提示:‘python’ 不是内部或外部命令,也不是可运行的程序或批处理文件。
- (2)若安装成功,则显示 python 版本号,否则提示:‘conda’ 不是内部或外部命令,也不是可运行的程序或批处理文件。
安装成功后,(自动)添加 Anaconda 到系统环境变量PATH:
D:\Anaconda3
D:\Anaconda3\Scripts
D:\Anaconda3\condabin
2.1.1、Mambaforge安装(mamba)
Mambaforge
:基于 conda 的一个轻量级 Python 环境管理工具。
- 默认使用
mamba
命令作为包管理器 - mamba 是 conda 的高速替代品,具有更快的包解析和安装速度。
- Anaconda(安装包非常大):预装了数百个科学计算和数据分析的库
- Mambaforge(安装包小): 不预装库,根据需求自行安装所需的库
- Mambaforge 可以被看作是
Miniforge
的一个变体,它在 Miniforge 的基础上,默认使用 mamba 作为包管理器。
- 安装教程
- (1)使用 conda 安装 mamba(神奇的操作,不建议):
conda install mamba -c conda-forge
- (2)github源码下载:https://github.com/mamba-org/mamba
- (3).exe安装包下载:https://github.com/conda-forge/miniforge/releases
- 使用教程:conda 命令怎么用,直接换成 mamba 即可。
2.2、PyCharm安装
PyCharm官网下载:PyCharm:JetBrains为专业开发者提供的Python IDE
- (1)下载详细过程:下载 - 选择Community版本(免费)直接下载。
提供两个两个版本:Professional(专业版,收费)和Community(社区版,免费)。- (2)安装详细过程:Browse(建议不要安装到C盘) - 全部勾选 - Install - 选择待会重启。
- (3)创建项目的环境配置:
打开软件 + File - Settings - Python:pythonProject - Python Interpreter(解释器) - 选择Python.exe的安装目录。
详细步骤如下:PyCharm下载安装教程 + 创建项目的环境配置
2.3、CUDA安装
CUDA(Compute Unified Device Architecture)
:是 NVIDIA 开发的,用于 NVIDIA GPU 并行计算的并行计算架构和编程模型。
- 它是一种硬件架构,定义了 GPU 的并行计算单元、内存架构、线程模型等。
CUDA Toolkit
: 是 NVIDIA 提供的,用于 GPU 加速计算的开发工具包,用于支持 CUDA 架构的并行计算。
- 它是一套软件工具,包含了一系列的工具、库和示例代码,用于开发、优化和部署基于 CUDA 的并行计算应用程序。
- GPU需要与CUDA结合,才能完成模型训练、PyTorch安装等等。
- 若没有CUDA,GPU在深度学习中就是个摆设。
- GPU推理速度是CPU的几十倍。
2.3.1、查看电脑 - 显卡型号
- (1)查看电脑显卡型号:
点击电脑菜单 + 鼠标右键 + 设备管理器 + 显示适配器 = NVIDIA显卡型号
2.3.2、查看电脑 - 最高支持CUDA版本
运行 nvidia-smi 命令,将显示 GPU 状态的表格:
WIN +R + cmd + 运行 + nvidia-smi
GPU: 表示 GPU 的编号,从 0 开始。
Name: 显示 GPU 的型号名称
Persistence-M: 显示 GPU 的持久模式状态(如:On始终运行、Off空闲时关闭)
Bus-Id: 显示 GPU 的总线ID,标识 GPU 的物理连接位置。
Disp.A: 显示器连接状态(通常显示为 Off 或 On)。
Volatile Uncorr. ECC: 显示 ECC 错误状态(通常为 N/A)。
Fan: 显示 GPU 的风扇转速,单位 RPM。
Temp: 当前 GPU 温度,单位摄氏度。
Perf: 当前 GPU 的性能状态(如:P0 表示最大性能,P8 表示最低性能)。
Pwr:Usage/Cap: 当前 GPU 的功率使用情况和功率上限,单位瓦特(W)。
Memory-Usage: 显示 GPU 内存使用情况,左 - 已用内存,右 - 总内存,单位MiB。
GPU-Util: 显示 GPU 的利用率,百分比值。
Compute M.: 显示 GPU 的计算模式(如:Default 或 Exclusive Process)。
MIG M.: 显示 Multi-Instance GPU 的状态(MIG)。
异常提示:‘nvidia-smi’ 不是内部或外部命令,也不是可运行的程序或批处理文件。
原因分析:NVIDIA驱动没有添加到系统环境路径中。
解决方案:我的电脑 + 鼠标右键 + 属性 + 高级系统设置 + 环境变量 + 系统变量 + Path + C:\Program Files\NVIDIA Corporation\NVSMI
异常提示:C:\Program Files\NVIDIA Corporation\NVSMI 目录不存在
原因分析:NVIDIA官网 - 将新版 nvidia-smi.exe 保存在 system32 目录下
解决方案:(1)Everything软件查找 nvidia-smi.exe;(2)在 C:\Program Files\NVIDIA Corporation 目录下新建 NVSMI 文件夹;(3)将 system32 目录下的MCU.exe、nvdebugdump.exe、nvidia-smi.exe、nvml.dll拷贝一份到 NVSMI 文件夹中。
2.3.3、CUDA下载与安装(核对版本关系)
CUDA官网下载:CUDA Toolkit Archive | NVIDIA Developer
(1)下载详细过程:请参考本机的显卡驱动以及电脑最高支持的CUDA版本,选择对应的版本。(版本不宜太高,否则将导致其他配置环境没有对应的版本。)
(2)安装详细过程:
- 异常提示:若本机已安装过CUDA,则只保留三个NVIDIA插件:NVIDIA GeForce Experience、NVIDIA PhysX 系统软件、NVIDIA 图形驱动程序。其余必须全部卸载干净,否则可能会导致安装失败。
- 异常提示:在选择驱动程序组件时
- (1)若本机未安装Visual Studio,则默认全部勾选。
- (2)若本机已安装Visual Studio,则系统会自动核实VS与CUDA版本是否匹配。
- 异常提示:若不匹配,系统将循环让你确认而导致无法安装。
- 解决方案:卸载 Visual Studio 后重新安装且不勾选 CUDA 组件下的 VS,即可正常安装。此时,系统提示" 没有VS将导致部分功能无法使用 ",无需理会。
- 安装成功后,(自动)添加CUDA到系统环境中:
变量名CUDA_PATH —————————— 变量值D:\CUDA_mange\CUDA11.8\CUDA02
变量名CUDA_PATH_V11_8 ———— 变量值D:\CUDA_mange\CUDA11.8\CUDA02
2.4、cuDNN下载与安装
cuDNN(CUDA Deep Neural Network library)
:是由 NVIDIA 提供的针对深度神经网络的加速库,用于加速深度神经网络的训练和推理过程。
- 提供了一系列高效的基本操作实现,如卷积、池化、归一化和激活函数等,以及一些优化技术,可以大大加速深度学习模型的训练和推断过程。
- 针对 NVIDIA GPU 进行了高度优化,利用了 GPU 的并行计算能力,使得深度学习模型在 GPU 上的运行速度更快。
- 支持多种深度学习框架,包括Caffe2、Chainer、Keras、MATLAB、MxNet、PaddlePaddle、PyTorch和TensorFlow。
cuDNN官网下载:CUDA Deep Neural Network (cuDNN) | NVIDIA Developer
- (1)下载详细过程:
注册NVIDIA账号 + 选择与CUDA相对应的cuDNN版本。
- (2)安装详细过程 查看CUDA安装路径:
WIN +R + cmd + 运行 + set cuda
- (3)查看是否安装成功
11、切换路径:WIN + R + cmd + 运行 + cd /d D:\CUDA11.1.0\CUDA02\extras\demo_suite
22、将该路径下的bandwidthTest.exe
+deviceQuery.exe
先后拖到 cmd 界面中,若都能运行成功,则证明cudnn安装成功。cmd中检查cuda及cudnn是否成功安装及其版本
2.5、PyTorch安装
PyTorch
:由 Facebook 的人工智能研究团队开发和维护的,用于机器学习和深度学习的开源深度学习框架。
- 提供了易于使用的 API 和丰富的功能,使得用户可以轻松构建和训练各种类型的神经网络模型。
2.5.1、pip安装 + 升级(在线与离线)
- 报错提示:‘pip’ 不是内部或外部命令,也不是可运行的程序 或批处理文件 – 解决方法
- 解决方案:添加环境变量
D:\Anaconda\Scripts
- 查看结果:
WIN + R + cmd + 运行 + pip
- 报错信息:
WARNING: There was an error checking the latest version of pip.
- 中文翻译:警告:检查最新版本的 pip 时出错。
- 原因分析:需要升级 pip 版本,才可以安装其他模块。
- 解决方案:
- 第一种:pip在线升级
- 在 cmd 命令提示符窗口中,输入:
python -m pip install --upgrade pip
- 第二种:pip离线升级(.whl)
- 11、Python官网轮子下载:https://pypi.org/project/pip/#files
- 22、将安装包存放到 python.exe 的目录下,并且在 cmd 命令窗口中通过 cd 命令跳转到 python.exe 目录下。
- 33、在 cmd 命令提示符窗口中,输入:
python -m pip install --upgrade xxx.whl
- 44、此时,系统会自动卸载原版本,再安装新版本,最终显示安装成功。
2.5.2、PyTorch安装(在线与离线)
PyTorch在线安装
PyTorch官网下载:An open source machine learning framework that accelerates the path from research prototyping to production deployment.
- (1)详细下载过程:
在官网中,找到与本机对应的CUDA版本并选中 + 鼠标右击并复制
- (2)详细安装过程:在 cmd 命令提示符窗口中,输入:
pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu113/torch_stable.html
PyTorch 离线安装 :PyTorch 离线安装详细教程
(1)PyTorch 轮子下载:
轮子下载:(CPU/GPU) torch、torchaudio、torchvision
torch
:是一个开源的 Python 深度学习框架。tochvision
:用于图像处理,提供一些常用的数据集、模型、转换函数等。torchaudio
:用于加载 wav 和 mp3 格式的音频文件,获取原始信号。参数讲解:
cu111/torch-1.9.1%2Bcu111-cp39-cp39-win_amd64.whl
cu111
:表示 GPU 版本的Pytorch,且CUDA版本为11.1。torch-1.9.1
:表示 torch 版本为1.9.1。%2B
:表示 beta 版本,与正式版一样。cp39
:表示 python 版本为 3.9。win_amd64
:表示适配的操作系统。备注1:找到本机的CUDA版本,选择对应的 PyTorch 版本; 否则将提示当前轮子在该平台不支持。
备注2:torch、torchaudio、torchvision版本必须一致; 否则将提示当前轮子在该平台不支持。查看版本对应关系
(2)PyTorch 轮子安装:torch、torchaudio、torchvision
- 11、在 cmd 命令提示符窗口中,提供 cd 命令定位到 .whl 的存放地址。
- 22、依次安装:
pip install torch-xxx.whl
pip install torchvison-xxx.whl
pip install torchaudio-xxx.whl
【BUG】PyTorch no longer supports this GPU.
- 【BUG】PyTorch no longer supports this GPU.
- 原因分析:GPU型号比较旧(如:GeForce GT 730,2G显存,算力3.5),当前版本的PyTorch已经不支持。
- 解决方法:降低 PyTorch 版本。
2.6、OpenCV(python)安装
注意:opencv_python
和 opencv_contrib-python
的版本必须一致
- 卸载老版本
- dos命令提示符窗口中,依次安装:
pip uninstall opencv-python==4.1.2.30
pip uninstall opencv-contrib-python==4.1.2.30
- 第一种:在线安装 :dos命令提示符窗口中,依次安装:
pip install opencv-python==3.4.2.16
pip install opencv-contrib-python==3.4.2.16
- 第二种:离线安装(.whl)
(1)下载详细教程
- opencv-python下载(清华园镜像):Links for opencv-python
- opencv-contrib-python下载(清华园镜像):Links for opencv-contrib-python
(2)详细安装教程:dos命令提示符窗口中,cd到下载地址。依次安装:
pip install opencv_python-4.5.4.60-cp39-cp39-win_amd64.whl
pip install opencv_contrib_python-4.5.4.60-cp39-cp39-win_amd64.whl
2.7、OpenCV(C++)安装
(1)简介
OpenCV(Open Source Computer Vision Library)
:是一个跨平台的开源计算机视觉库。可用于开发实时的图像处理、计算机视觉以及模式识别程序。
- 基于C++语言编写,主要接口也是C++语言,但依然保留了大量的C语言接口。该库也有大量的Python、Java and MATLAB / OCTAVE(版本2.5)的接口。这些语言的API接口函数可以通过在线文档获得。如今也提供对于C#、Ch、Ruby、GO的支持。
- 由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。可以使用英特尔公司的IPP进行加速处理。
(2)下载与安装
OpenCV支持多平台:Windows、Android、Maemo、FreeBSD、OpenBSD、iOS、Linux和Mac OS。根据个人情况,选择对应版本。该教程以Windows为例:
- Opencv官网下载:https://opencv.org/ 。选择Library下的Releases,进入到下载页面;或直接访问下载页面:https://opencv.org/releases/
- 点击Windows后,将跳转下载页面,文件名:
opencv-4.7.0-windows.exe
。- 下载完成后,双击打开并选择安装路径,开始安装。
(3)环境变量配置
- 详细过程如下:我的电脑 + 鼠标右击选择属性 + 选择高级系统设置 + 点击环境变量 + 选择系统变量下的Path变量 + 点击编辑 + 新建以下地址变量:
E:\opencv c++\opencv\build\x64\vc15\bin
E:\opencv c++\opencv\build\x64\vc15\lib
E:\opencv c++\opencv\build\include
E:\opencv c++\opencv\build\include\opencv2
- 其中:E:\opencv c++\opencv 是 opencv 的安装路径。
安装完成后,若想在VS中调用,还需要在VS编辑器中部署相关配置,详细见下文。
(4)Visual Studio 部署 OpenCV
备注:下载的 OpenCV 是 x64 版本,故需要切换:Debug x86 -> Debug x64。
- 设置VC++目录 - 包含目录
- 详细过程如下:选择项目 + 鼠标右击选择属性 + 选择VC++目录,点击包含目录下拉框,选择编辑,在弹出的新页面中,新建以下路径:
E:\opencv c++\opencv\build\include
E:\opencv c++\opencv\build\include\opencv2
- 设置VC++目录 - 库目录
- 详细过程如下:选择项目 + 鼠标右击选择属性 + 选择VC++目录,点击库目录下拉框,选择编辑,在弹出的新页面中,新建以下路径:
E:\opencv c++\opencv\build\x64\vc16\lib
- 设置链接器 - 附加依赖项
- 详细过程如下:选择项目 + 鼠标右击选择属性 + 选择链接器 - 输入,点击附加依赖项下拉框,选择编辑,在弹出的新页面中,新建以下文件名:
- Release模式:
opencv_world455.lib
- Debug模式:
opencv_world455d.lib
2.8、Visual Studio安装
2.9、Python安装包:python-3.12.10-amd64.exe
- 下载官方Python安装包(推荐直接去Python.org官网)。
- 安装时注意两点:
- (1)勾选Add Python to PATH。
- (2)选择Customize installation,然后勾选Install for all users,安装到系统盘如C:\Python39。
210、Python开源常用扩展包:.gz 安装教程
- PyPi官网下载地址(.gz):Python Package Index (PyPI) 是 Python 编程语言的软件存储库。
- (1)快速搜索文件:ctrl + F + 想要下载的文件名,下载对应的版本号。
- (2)
Dos命令行窗口下cd到安装包的setup.py文件路径下,输入:python setup.py install
2.11、Python开源常用扩展包:.whl 安装教程
- Python开源常用扩展包下载地址(.whl):Archived: Unofficial Windows Binaries for Python Extension Packages
- (1)快速搜索文件:ctrl + F + 想要下载的文件名,下载对应的版本号。
- (2)
Dos命令行窗口下cd到.whl文件路径下,输入:pip install xxx.whl
。
- Python.wheel官网下载地址(.whl):Python的轮子 – 常用的包、库、软件
- 快速搜索文件:ctrl + F + 想要下载的文件名,下载对应的版本号。
(1)轮子安装(.whl文件)是不需要联网的,因为轮子文件中已经包含了所需的依赖关系。
(2)翻墙状态,无法安装。—— 异常提示:网络设置或SSL配置问题。
2.12、清华大学镜像源 + 阿里云镜像源
清华大学镜像源和阿里云镜像源都是国内知名的 Python 包管理系统 (PyPI) 镜像源。它们的主要目的是提供快速稳定的 Python 包下载服务,特别是在国内用户访问官方 PyPI 镜像速度较慢的情况下。
若不使用镜像:(1)网络问题而安装失败;(2)耗时长;
- 清华大学镜像源网址:https://pypi.tuna.tsinghua.edu.cn/simple
- 由清华大学 TUNA 协会(Tsinghua University Network Administrators)维护。
- 提供了包括 Python 包在内的多种开源软件的镜像源。
- 更新较及时,能够同步最新的官方 PyPI 仓库内容。
- 适合范围:国内学术环境和科研人员使用。
- 使用方法:
pip install package_name -i https://pypi.tuna.tsinghua.edu.cn/simple
- 阿里云镜像源网址:http://mirrors.aliyun.com/pypi/simple
- 由阿里巴巴集团旗下的阿里云(Alibaba Cloud)提供和维护。
- 提供高性能的镜像服务,适用于各种开源软件。
- 有着强大的基础设施和带宽支持,下载速度快,稳定性高。
- 更新频率较高,能够快速同步官方 PyPI 仓库内容。
- 适合范围:企业级用户和开发者使用。
- 使用方法:
pip install package_name -i http://mirrors.aliyun.com/pypi/simple --trusted-host mirrors.aliyun.com
--trusted-host mirrors.aliyun.com
参数告诉 pip 信任这个主机,即使它使用的是 HTTP 而不是 HTTPS。因为默认情况下,pip 只信任 HTTPS 主机,以确保包的安全性。
- 安装失败:
pip install package_name -i http://mirrors.aliyun.com/pypi/simple
- 安装失败:
pip install package_name -i https://mirrors.aliyun.com/pypi/simple
- 安装失败:
pip install package_name -i https://mirrors.aliyun.com/pypi/simple --trusted-host mirrors.aliyun.com
"""两种镜像源的适用范围(仅个人测试结论)"""
# (1)requirements.txt安装
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
# (2)python包安装
conda install python==3.9
pip install opencv-python==4.5.1.48 -i http://mirrors.aliyun.com/pypi/simple --trusted-host mirrors.aliyun.com
pip install opencv-contrib-python==4.5.1.48 -i http://mirrors.aliyun.com/pypi/simple --trusted-host mirrors.aliyun.com