写在前面:
在本章中,首先,我们详细地总结和分析了生成对抗网络在主动学习方法中的应用价值。然后,围绕提高生成图像的质量、提升筛选样本的价值以及减少样本筛选的时间成本等方面,我们提出了一种基于生成对抗网络的二阶段主动学习方法。
主动学习系列博文:
【Active Learning - 00】主动学习重要资源总结、分享(提供源码的论文、一些AL相关的研究者):https://blog.csdn.net/Houchaoqun_XMU/article/details/85245714
【Active Learning - 01】深入学习“主动学习”:如何显著地减少标注代价:https://blog.csdn.net/Houchaoqun_XMU/article/details/80146710
【Active Learning - 02】Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally:https://blog.csdn.net/Houchaoqun_XMU/article/details/78874834
【Active Learning - 03】Adaptive Active Learning for Image Classification:https://blog.csdn.net/Houchaoqun_XMU/article/details/89553144
【Active Learning - 04】Generative Adversarial Active Learning:https://blog.csdn.net/Houchaoqun_XMU/article/details/89631986
【Active Learning - 05】Adversarial Sampling for Active Learning:https://blog.csdn.net/Houchaoqun_XMU/article/details/89736607
【Active Learning - 06】面向图像分类任务的主动学习系统(理论篇):https://blog.csdn.net/Houchaoqun_XMU/article/details/89717028
【Active Learning - 07】面向图像分类任务的主动学习系统(实践篇 - 展示):https://blog.csdn.net/Houchaoqun_XMU/article/details/89955561
【Active Learning - 08】主动学习(Active Learning)资料汇总与分享:https://blog.csdn.net/Houchaoqun_XMU/article/details/96210160
【Active Learning - 09】主动学习策略研究及其在图像分类中的应用:研究背景与研究意义:https://blog.csdn.net/Houchaoqun_XMU/article/details/100177750
【Active Learning - 10】图像分类技术和主动学习方法概述:https://blog.csdn.net/Houchaoqun_XMU/article/details/101126055
【Active Learning - 11】一种噪声鲁棒的半监督主动学习框架:https://blog.csdn.net/Houchaoqun_XMU/article/details/102417465
【Active Learning - 12】一种基于生成对抗网络的二阶段主动学习方法:https://blog.csdn.net/Houchaoqun_XMU/article/details/103093810
【Active Learning - 13】总结与展望 & 参考文献的整理与分享(The End...):https://blog.csdn.net/Houchaoqun_XMU/article/details/103094113
4.1 导言
随着数据采集技术的不断发展,使得很多领域能够廉价地获取大量未标注样本。因此,基于未标注样本池的主动学习方法被广泛应用在许多领域中。目前,大多数相关研究通过对所有未标注样本进行预测,并根据合适的策略筛选出最具有“价值”的样本。然而,对于未标注样本池规模较大的场景,若每次迭代都需要对大量的未标注样本进行预测,将产生较大的时间成本。近几年,生成对抗网络凭借无监督的方式生成质量较高的图像,从而受到广泛的关注。随后,陆续有相关的研究工作将其应用到主动学习方法中并取得较好的效果。其中, Zhu 等[19]提出了一种生成对抗主动学习(Generative Adversarial Active Learning, GAAL)方法,通过深度卷积生成对抗网络[16(] Deep Convolution Generative Adversarial Networks, DCGAN)生成具有丰富信息量的待标注样本集。 GAAL 不需要在每次迭代中对所有未标注样本进行预测,而是直接将主动学习策略与生成器进行组合训练,直接生成待标注样本集,这是以往的主动学习方法不具备的能力。此外, Christoph 等[50] 在 GAAL的基础上进行改进,提出了一种对抗采样主动学习方法(Adversarial Sampling forActive Learning, ASAL)。 GAAL 和 ASAL 最主要的区别在于: GAAL 直接将生成的样本交由专家标注并加入训练集;而 ASA