前言:
TP:True positive
FP:False positive
TN:True negative
FN:False negative
(从下文【解释1】中整理而来的图解)
上述四个名词广泛应用于各种领域。召回率(Recall),精确率(Precision),平均正确率(AP),交除并(IoU)是【object detection】领域的几个性能的衡量指标,其中 AP 取决于 Recall and Precision 组成的曲线,而 Recall and Precision 的计算与上述四个名词息息相关,公式分别如下所示:
本文主要找了几个比较受益的相关资料整理于此,之后也会根据自己慢慢学习过程中的理解进一步完善这篇博文。
解释1:(摘抄至)http://blog.csdn.net/syoung9029/article/details/56276567
本文主要摘抄参考资料中的实例:大雁与飞机
假设现在有这样一个测试集,测试集中的图片只由大雁和飞机两种图片组成,如下图所示:
假设你的分类系统最终的目的是:能取出测试集中所有飞机的图片,而不是大雁的图片。现在做如下的定义:
True positives : 飞机的图片被正确的识别成了飞机。
True negatives: 大雁的图片没有被识别出来,系统正确地认为它们是大雁。
False positives: 大雁的图片被错误地识别成了飞机。
False negatives: 飞机的图片没有被识别出来,系统错误地认为它们是大雁。
假设你的分类系统使用了上述假设识别出了四个结果,如下图所示:
那么在识别出的这四张照片中:
True positives : 有三个,画绿色框的飞机。
False positives: 有一个,画红色框的大雁。
没被识别出来的六张图片中:
True negatives : 有四个,这四个大雁的图片,系统正确地没有把它们识别成飞机。
False negatives: 有两个,两个飞机没有被识别出来,系统错误地认为它们是大雁。
Precision 与 Recall 的计算:
Precision其实就是在识别出来的图片中,True positives所占的比率:
其中的n代表的是(True positives + False positives),也就是系统一共识别出来多少照片 。
在这一例子中,True positives为3,False positives为1,所以Precision值是 3/(3+1)=0.75。
意味着在识别出的结果中,飞机的图片占75%。
Recall 是被正确识别出来的飞机个数与测试集中所有飞机的个数的比值:
Recall的分母是(True positives + False negatives),这两个值的和,可以理解为一共有多少张飞机的照片。
在这一例子中,True positives为3,False negatives为2,那么Recall值是 3/(3+2)=0.6。
意味着在所有的飞机图片中,60%的飞机被正确的识别成飞机。
解释2:(摘抄至)http://blog.51cto.com/simon/73395
ROC Curve and AUC:https://blog.csdn.net/ice110956/article/details/20288239
ROC空间将伪阳性率(FPR)定义为 X 轴,真阳性率(TPR)定义为 Y 轴。ROC曲线上的一个点对应一个阈值,遍历所有的阈值,得到ROC曲线。
标量值AUC:ROC曲线所覆盖的区域面积。AUC越大,分类器分类效果越好。
(详情请参考标题所附链接)