uva 10422(隐式图搜索)

题意:给出了一个5×5的棋盘,任意放了12个白子,12个黑子,有一个空位,每个棋子都要像象棋里的马一样走‘日’,跳到空白位置,问是否可以在10步以内(包括十步)走成题目第一个图片中的样子,如果可以输出最小的步数,否则输出“Uns....”

题解:用bfs做的这题,主要是判重的时候,把棋盘上白子为0,黑子为1,空白为2,当成25位的3进制数字,转化成十进制用map判断是否访问过。

#include <stdio.h>
#include <string.h>
#include <queue>
#include <algorithm>
#include <cmath>
#include <map>
using namespace std;
const int N = 5;
struct ST {
	int ch[N][N];
	int step;
	int x, y;
}s, st;
int x, y, ans; 
const int dx[] = {-1, -1, 1, 1, -2, -2, 2, 2};
const int dy[] = {-2, 2, -2, 2, 1, -1, 1, -1};
int	tar[N][N] = {{1, 1, 1, 1, 1}, {0, 1, 1, 1, 1}, {0, 0, 2, 1, 1}, {0, 0, 0, 0, 1}, {0, 0, 0, 0, 0}};
queue<ST> q;
map<long long, int> m;

int hash(ST temp) {
	long long cnt, k;
	cnt = k = 0;
	for (int i = 0; i < N; i++)
		for (int j = 0; j < N; j++)
			cnt += temp.ch[i][j] * pow(3, k++);
	if (!m[cnt]) {
		m[cnt] = 1;
		return 1;
	}
	return 0;
}

void bfs() {
	q.push(s);
	while(!q.empty()) {
		st = q.front();
		q.pop();
		if (st.step > 9)
			return;
		for (int i = 0; i < 8; i++) {
			int x1 = st.x + dx[i];
			int y1 = st.y + dy[i];
			if (x1 < 0 || x1 >= N || y1 < 0 || y1 >= N)
				continue;
			s = st;
			s.ch[s.x][s.y] = s.ch[x1][y1];
			s.ch[x1][y1] = 2;
			s.x = x1;
			s.y = y1;
			if (hash(s)) {
				s.step = st.step + 1;
				if (memcmp(s.ch, tar, sizeof(tar)) == 0) {
					ans = s.step;
					return;
				}
				q.push(s);
			}
		}
	}
}

int main() {
	int t;
	char c;
	scanf("%d", &t);
	getchar();
	while (t--) {
		while (!q.empty())
			q.pop();
		ans = -1;
		m.clear();
		for (int i = 0; i < N; i++) {
			for (int j = 0; j < N; j++) {
				scanf("%c", &c);
				if (c == '0')
					s.ch[i][j] = 0;
				else if (c == '1')
					s.ch[i][j] = 1;
				else {
					s.ch[i][j] = 2;
					s.x = i;
					s.y = j;
				}
			}
			getchar();
		}
		if (memcmp(s.ch, tar, sizeof(tar)) == 0) {
			printf("Solvable in 0 move(s).\n");
			continue;
		}
		s.step = 0;
		hash(s);
		bfs();
		if (ans != -1)
			printf("Solvable in %d move(s).\n", ans);
		else
			printf("Unsolvable in less than 11 move(s).\n");
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值