题目的意思就是在一个5*5的棋盘上,摆了12个白马,12个黑马。还有一个空地。
每个马都是走日字,如果空格的八个日字的方向,没有超出棋盘,就能把那个点的马走过来,那那个点也就变成了空格。
问题是在11步内能不能走成题目要求的那种样子,能就输出走了几步。
我用的方法是bfs加三进制判重。
我把棋盘上的黑马标记为2,白马为1,空格为0;
然后每一种棋盘状态,都能用一个25位的3进制表示(要用long long存),所以用一个映射map< long long ,int > 如果对应的状态出现过,就把对应映射标记成1。。
然后就是一个普通的bfs()八个方向都访问一遍,新状态没有超出棋盘,并且未被访问过,就入队列,如果已经是步数为10了。那就不要再继续有新状态入队列了,把队列里剩下的步数为10的都判断一下是不是满足(不能碰到第一个步数为10就结束了,队列中这时应该还有很多步数为10的状态,其中有的可能会满足,步数为十只是不需要在八个方向去判断,不需要新的状态入队(因为新状态就是步数为11的))。
AC代码:
#include<cstdio>
#include<cstring>
#include<queue>
#include<map>
#include<cmath>
using namespace std;
#define ll long long
struct state {
int s[5][5];
int x,y;
int pac;
}st1,st2;
int mi ;
int ex,ey;
int str[5][5];
int dx[]= {-2,-2,2,2,-1,1,-1,1};
int dy[]= {-1,1,-1,1,-2,-2,2,2};
int tar[5][5] = { {2, 2, 2, 2, 2},
{1, 2, 2, 2, 2},
{1, 1, 0, 2, 2},
{1, 1, 1, 1, 2},
{1, 1, 1, 1, 1} };
queue<state> q;
map<ll , int> m;
bool yes(state st){
int s = 0;
for(int i = 0; i < 5; i++)
for(int j = 0; j < 5; j++)
if(tar[i][j] != st.s[i][j])
s++;
if (s == 0)
return true;
return false;;
}
bool repeated(state st) {
int flag = 0;
ll res = 0;
for (int i = 0 ; i < 5;i++) {
for (int j = 0; j < 5 ;j++) {
res += st.s[i][j] * pow(3,flag++);
}
}
if(m[res] != 0)
return true;
return false;
}
void setmap (state st) {
int flag = 0;
ll res = 0;
for (int i = 0 ; i < 5;i++) {
for (int j = 0; j < 5 ;j++) {
res += st.s[i][j] * pow(3,flag++);
}
}
m[res] = 1;
}
void bfs() {
st1.x = ex;
st1.y = ey;
st1.pac = 0;
for (int i = 0 ;i < 5 ;i++) {
for (int j = 0 ; j < 5 ;j++) {
st1.s[i][j] = str[i][j];
}
}
q.push(st1);
setmap(st1);
while (!q.empty()) {
st1 = q.front();
q.pop();
if(yes(st1)) {
mi = st1.pac;
return;
}
if(st1.pac == 10)
continue;
for(int i = 0; i < 8; i++) {
int x = st1.x;
int y = st1.y;
int nx = x + dx[i];
int ny = y + dy[i];
if(nx >= 0 && nx < 5 && ny >= 0 && ny < 5){
st1.s[x][y] = st1.s[nx][ny];
st1.s[nx][ny] = 0;
if(repeated(st1)) {
st1.s[nx][ny] = st1.s[x][y];
st1.s[x][y] = 0;
continue;
}
setmap(st1);
st1.pac += 1;
st1.x = nx;
st1.y = ny;
q.push(st1);
// printf("%d %d -> %d %d\n",x,y,nx,ny);
// for (int i = 0 ; i < 5 ;i++) {
// for (int j = 0 ; j < 5 ; j++) {
// printf("%d",st1.s[i][j]);
// }
// printf("\n");
// }
// return;
// printf("\n");
st1.s[nx][ny] = st1.s[x][y];
st1.s[x][y] = 0;
st1.x = x;
st1.y = y;
st1.pac -= 1;
}
}
}
}
int main (){
int t;
char ch;
scanf("%d",&t);
getchar();
while(t--){
m.clear();
while (!q.empty()) {
q.pop();
}
for(int i = 0; i < 5; i++) {
for(int j = 0; j < 5; j++) {
scanf("%c", &ch);
if(ch == ' ') {
str[i][j] = 0;
ex = i;
ey = j;
}
else
str[i][j] = ch - '0' + 1;
}
getchar();
}
// printf("%d %d\n",ex,ey);
// for (int i = 0 ; i < 5 ;i++) {
// for (int j = 0 ; j < 5 ; j++) {
// printf("%d",str[i][j]);
// }
// printf("\n");
// }
// printf("\n");
mi = 11;
bfs();
if (mi < 11)
printf("Solvable in %d move(s).\n", mi);
else
printf("Unsolvable in less than 11 move(s).\n");
}
return 0;
}