UVA10422

题目的意思就是在一个5*5的棋盘上,摆了12个白马,12个黑马。还有一个空地。

每个马都是走日字,如果空格的八个日字的方向,没有超出棋盘,就能把那个点的马走过来,那那个点也就变成了空格。

问题是在11步内能不能走成题目要求的那种样子,能就输出走了几步。


我用的方法是bfs加三进制判重。

我把棋盘上的黑马标记为2,白马为1,空格为0;

然后每一种棋盘状态,都能用一个25位的3进制表示(要用long long存),所以用一个映射map< long long ,int > 如果对应的状态出现过,就把对应映射标记成1。。

然后就是一个普通的bfs()八个方向都访问一遍,新状态没有超出棋盘,并且未被访问过,就入队列,如果已经是步数为10了。那就不要再继续有新状态入队列了,把队列里剩下的步数为10的都判断一下是不是满足(不能碰到第一个步数为10就结束了,队列中这时应该还有很多步数为10的状态,其中有的可能会满足,步数为十只是不需要在八个方向去判断,不需要新的状态入队(因为新状态就是步数为11的))。


AC代码:


#include<cstdio>
#include<cstring>
#include<queue>
#include<map>
#include<cmath>
using namespace std;

#define ll long long
struct state {
	int s[5][5];
	int x,y;
	int pac;
}st1,st2;
int mi ;
int ex,ey;
int str[5][5];
int dx[]= {-2,-2,2,2,-1,1,-1,1};
int dy[]= {-1,1,-1,1,-2,-2,2,2};
int tar[5][5] = { {2, 2, 2, 2, 2},
				  {1, 2, 2, 2, 2},
				  {1, 1, 0, 2, 2},
				  {1, 1, 1, 1, 2},
				  {1, 1, 1, 1, 1} };
queue<state> q;
map<ll , int> m;
bool yes(state st){
    int s = 0;
    for(int i = 0; i < 5; i++)
	   	for(int j = 0; j < 5; j++)
			if(tar[i][j] != st.s[i][j]) 
				s++;
    if (s == 0)
		return true;
	return false;;
}

bool repeated(state st) {
	int flag = 0;
	ll res = 0;
	for (int i = 0 ; i < 5;i++) {
		for (int j = 0; j < 5 ;j++) {
			res += st.s[i][j] * pow(3,flag++);
		}
	}
	if(m[res] != 0)
		return true;
	return false;
}
void setmap (state st) {
	int flag = 0;
	ll res = 0;
	for (int i = 0 ; i < 5;i++) {
		for (int j = 0; j < 5 ;j++) {
			res += st.s[i][j] * pow(3,flag++);
		}
	}
	m[res] = 1;
}

void bfs() {
	st1.x = ex;
	st1.y = ey;
	st1.pac = 0;
	for (int i = 0 ;i < 5 ;i++) {
		for (int j = 0 ; j < 5 ;j++) {
			st1.s[i][j] = str[i][j];
		}
	}
	q.push(st1);
	setmap(st1);
	while (!q.empty()) {
		st1 = q.front();
		q.pop();
		if(yes(st1)) {
			mi = st1.pac;
			return;
		}
		if(st1.pac == 10)
			continue;
		for(int i = 0; i < 8; i++) {
			int x = st1.x;
			int y = st1.y;
			int nx = x + dx[i];
			int	ny = y + dy[i];
			if(nx >= 0 && nx < 5 && ny >= 0 && ny < 5){
				st1.s[x][y] = st1.s[nx][ny];
				st1.s[nx][ny] = 0;
				if(repeated(st1)) {
					st1.s[nx][ny] = st1.s[x][y];
					st1.s[x][y] = 0;
					continue;
				}
				setmap(st1);
				st1.pac += 1;
				st1.x = nx;
				st1.y = ny;
				q.push(st1);
//				printf("%d %d -> %d %d\n",x,y,nx,ny);
//				for (int i = 0 ; i < 5 ;i++) {
//					for (int j = 0 ; j < 5 ; j++) {
//						printf("%d",st1.s[i][j]);
//					}
//					printf("\n");
//				}
//				return;
//				printf("\n");
				st1.s[nx][ny] = st1.s[x][y];
				st1.s[x][y] = 0;
				st1.x = x;
				st1.y = y;
				st1.pac -= 1;
			}
		}
	}
}

int main (){
	int t;
	char ch;
	scanf("%d",&t);
	getchar();
	while(t--){
		m.clear();
		while (!q.empty()) {
			q.pop();
		}
		for(int i = 0; i < 5; i++) {
			for(int j = 0; j < 5; j++) { 
				scanf("%c", &ch);
				if(ch == ' ') {
					str[i][j] = 0;
					ex = i;
					ey = j;
				}
				else 
					str[i][j] = ch - '0' + 1;
			}
			getchar();
		}
//		printf("%d %d\n",ex,ey);
//		for (int i = 0 ; i < 5 ;i++) {
//			for (int j = 0 ; j < 5 ; j++) {
//				printf("%d",str[i][j]);
//			}
//			printf("\n");
//		}
//		printf("\n");
		mi = 11;
		bfs();
		if (mi < 11)
			printf("Solvable in %d move(s).\n", mi);
		else
			printf("Unsolvable in less than 11 move(s).\n");
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值