uva--10422+bfs+hash判重

博客介绍了如何解决UVA 10422问题,通过使用宽度优先搜索(BFS)策略,并采用BKDRHash进行状态判重。在尝试将棋盘问题转化为一维数组时遇到错误,但在二维数组表示下得到正确结果,作者未阐明具体原因。
摘要由CSDN通过智能技术生成

题意:

   给定一个5x5的棋盘及24个黑白棋子和一个空格,问你最少经过多少步的移动后可以到达目标状态。

思路:

  这个题目的思路和八数码问题是一样的,但因为有25个格子,所以不能用康托展开进行判重,我选用了字符串BKDRHash进行的判重。

但是如果我将这个棋盘展开成一维数组做的时候总是答案错误,当用二维数组表示的时候就可以,现在我还是不知道原因。


代码如下:


#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;

#define Mod 499979
#define MaxSize 500000

typedef char State[5][5];
State st[MaxSize],vis[MaxSize],goal={{'1','1','1','1','1'},
                                     {'0','1','1','1','1'},
                                     {'0','0',' ','1','1'},
                                     {'0','0','0','0','1'},
                                     {'0','0','0','0','0'}};
int step[MaxSize],a[MaxSize];
int dx[]={-2,-2,-1,1,2,2,1,-1};
int dy[]={-1,1,2,2,1,-1,-2,-2};

int BKDRHash(State& s)
{
    int i,j;
    int seed=31;
    int sum=0;
    for(i=0;i<5;i++)
        for(j=0;j<5;j++)
           sum=sum*seed+s[i][j];
    sum=sum&0x7fffffff;
    return sum%Mod;
}

int Insert(int s)
{
    int i,j,k;
    int h=BKDRHash(st[s]);
    if(a[h]==0)
    {
        a[h]=1;
        memcpy(vis[h],st[s],sizeof(st[s]));
        return 1;
    }
    while(a[h]!=0)
    {
        if(memcmp(vis[h],st[s],sizeof(st[s]))==0)
            return 0;
        h++;
    }
    a[h]=1;
    memcpy(vis[h],st[s],sizeof(st[s]));
    return 1;
}

int bfs()
{
    memset(a,0,sizeof(a));
    Insert(0);
    int front=0, rear=1,i,j;
    step[front]=0;
    while(front<rear)
    {
         State& s=st[front];
         if(step[front]>10)
            return -1;
         if(memcmp(goal,s,sizeof(s))==0)
             return step[front];
         int x,y;
         for(i=0;i<5;i++)
         {
            for(j=0;j<5;j++)
            {
                if(s[i][j]==' ')
                   break;
            }
            if(j<5)
                break;
         }
         x=i,y=j;
         for(i=0;i<8;i++)
         {
             int xx=x+dx[i];
             int yy=y+dy[i];
             if(xx>=0&&xx<5&&yy>=0&&yy<5)
             {
                  State& t=st[rear];
                  memcpy(t,s,sizeof(s));
                  t[x][y]=s[xx][yy];
                  t[xx][yy]=s[x][y];
                  step[rear]=step[front]+1;
                  if(Insert(rear))
                      rear++;
             }
         }
         front++;
    }
    return -1;
}

int main()
{
    int i,j,k=0,t,m;
    char s[10][10];
    scanf("%d",&t);
    getchar();
    while(t--)
    {
        for(i=0;i<5;i++)
           gets(s[i]);
        for(i=0;i<5;i++)
            for(j=0;j<5;j++)
              st[0][i][j]=s[i][j];
        int ans=bfs();
        if(ans!=-1)
           printf("Solvable in %d move(s).",ans);
        else
           printf("Unsolvable in less than 11 move(s).");
        printf("\n");
    }
 return 0;
}








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值