HDU 1506 Largest Rectangle in a Histogram(DP)

该博客主要探讨了如何解决HDU 1506题目,即在条形图中找到最大矩形面积的问题。通过动态规划的方法,利用left[i]和right[i]分别表示以第i个条形为基础的最大矩形左右边界,当满足条件时更新这两个值。最终,通过计算(left[i]-left[i]+1)*h[i]来找到最大面积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Largest Rectangle in a Histogram

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 11137    Accepted Submission(s): 3047


Problem Description
A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:

Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.
 

Input
The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1 <= n <= 100000. Then follow n integers h1, ..., hn, where 0 <= hi <= 1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.
 

Output
For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.
 

Sample Input
7 2 1 4 5 1 3 3 4 1000 1000 1000 1000 0
 

Sample Output
8 4000
 

题意  求条形图中最大矩形的面积  输入给你条的个数  每个条的高度hi   (以下等于也视为高)

只要知道第i个条左边连续多少个(a)比他高   右边连续多少个(b)比他高  那么以这个条为最大高度的面积就是hi*(a+b+1);

但是直接枚举每一个的话肯定会超时的   超时代码

#include<cstdio>
using namespace std;
const int N = 100005;
typedef long long ll;
ll h[N]; int n,wide[N];
int main()
{
    while (scanf ("%d", &n), n)
    {
        for (int i = 1; i <= n; ++i)
            scanf ("%I64d", &h[i]);
        for (int i = 1; i <= n; ++i)
        {
            wide[i] = 1;
            int k = i;
            while (k > 1 && h[--k] >= h[i]) ++wide[i];
            k = i;
            while (k < n && h[++k] >= h[i]) ++wide[i];
        }
        ll ans = 0;
        for (int i = 1; i <= n; ++i)
            if (h[i]*wide[i] > ans) ans = h[i] * wide[i];
        printf ("%I64d\n", ans);
    }
    return 0;
}

可以发现   当第i-1个比第i个高的时候   比第i-1个高的所有也一定比第i个高  

于是可以用到动态规划的思想

令left[i]表示包括i在内比i高的连续序列中最左边一个的编号   right[i]为最右边一个的编号

那么有   当h[left[i]-1]>=h[i]]时   left[i]=left[left[i]-1]  从前往后可以递推出left[i]   

同理      当h[right[i]+1]>=h[i]]时   right[i]=right[right[i]+1]   从后往前可递推出righ[i]

最后答案就等于 max((right[i]-left[i]+1)*h[i])

#include<cstdio>
using namespace std;
const int N = 100005;
typedef long long ll;
ll h[N];
int n, left[N], right[N];
int main()
{
    while (scanf ("%d", &n), n)
    {
        for (int i = 1; i <= n; ++i)
            scanf ("%I64d", &h[i]), left[i] = right[i] = i;
        h[0] = h[n + 1] = -1;
        for (int i = 1; i <= n; ++i)
            while (h[left[i] - 1] >= h[i])
                left[i] = left[left[i] - 1];
        for (int i = n; i >= 1; --i)
            while (h[right[i] + 1] >= h[i])
                right[i] = right[right[i] + 1];
        ll ans = 0;
        for (int i = 1; i <= n; ++i)
            if (h[i] * (right[i] - left[i] + 1) > ans) ans = h[i] * ll (right[i] - left[i] + 1);
        printf ("%I64d\n", ans);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值