最近学习了一种叫做 Factorization Machines(简称 FM)的算法,它可对任意的实值向量进行预测。其主要优点包括: 1) 可用于高度稀疏数据场景;2) 具有线性的计算复杂度。本文将对 FM 框架进行简单介绍,并对其训练算法 — 随机梯度下降(SGD)法和交替最小二乘法(ALS)法进行详细推导。
相关链接:
作者: peghoty
出处: http://blog.csdn.net/itplus/article/details/40534885
欢迎转载/分享, 但请务必声明文章出处.

本文介绍了Factorization Machines(FM)算法,一种适用于高度稀疏数据场景的预测模型,具有线性计算复杂度。文中还详细推导了FM的两种训练算法:随机梯度下降(SGD)法和交替最小二乘法(ALS)法。
1270

被折叠的 条评论
为什么被折叠?



