Supervised Descent Method(人脸对齐之SDM论文解析)

Supervised Descent Method(人脸对齐之SDM论文解析)

标签: SDM NLS Jacobian Hessian FaceAlignment


作者:贾金让
本人博客链接:http://blog.csdn.net/jiajinrang93

1.概述

文章名称:Supervised Descent Method and its Applications to Face Alignment
文章来源:2013CVPR
文章作者:Xuehan Xiong,Fernando De la Torre
简要介绍:这篇文章主要提出了一种名为SDM(Supervised Descent Method)的方法,用来最小化非线性最小二乘(Non-linear Least Squares)目标函数,即目标函数是均方误差。SDM方法通过学习得到一系列下降的方向和该方向上的尺度,使得目标函数以非常快的速度收敛到最小值,回避了求解Jacobian矩阵Hessian矩阵的问题。下面开始详细介绍,我补充了文章中只给出结果的推导过程,并且稍微调整了一下文章中牛顿步的推导过程。

2.从牛顿步说起

数值优化在很多领域都有很重要的应用,计算机视觉中很多重要的问题比如(行人跟踪、人脸对齐等)都可以化成非线性优化问题来解决。解决非线性优化的方法有很多,其中非常常用的有基于一阶的或者是二阶的优化方法,比如梯度下降方法牛顿步LM算法等等。尽管很多年过去了,在二阶导可求得情况下,牛顿步仍然被认为是一个非常优秀的算法。

那么什么是牛顿步方法呢?下面简单介绍一下牛顿步,后面还会详细推导牛顿步。

牛顿步:在Hessian矩阵正定的情况下,极小值可以通过求解线性方程组来迭代求解。给定一个初始的估计值 x 0 ∈ ℜ p × 1 x_0\in\Re^{p\times1} x0p×1,牛顿步的更新迭代公式如下:
x k + 1 = x k − H − 1 ( x k ) J f ( x k ) (1) x_{k+1}=x_k-H^{-1}(x_k)J_f(x_k)\tag{1} xk+1=xkH1(xk)Jf(xk)(1)
其中 H − 1 ( x k ) ∈ ℜ p × p H^{-1}(x_k)\in\Re^{p\times p} H1(xk)p×p是在 x k x_k xk点的Hessian矩阵, J f ( x k ) ∈ ℜ p × 1 J_f(x_k)\in\Re^{p\times1} Jf(xk)p×1是 在 x k x_k xk点的 Jacobian矩阵。
牛顿步方法有
两个主要优点

  1. 如果牛顿步可以收敛,那么它的收敛速度是二次的,收敛速度非常快。
  2. 如果初始点在最小点邻域附近,那么它一定可以收敛。
    但牛顿法在应用中,也有几个缺点
  3. Hessian矩阵在极小值附近是局部正定的,但可能不是全局正定的,这就会导致牛顿步并不一定朝向下降的方向。
  4. 牛顿步需要函数二次可导。这个要求在实际应用中是一个很强的要求,比如图像处理中经常被使用的SIFT特征,它可以被看成是一个不可导的特征,因此在这种情况下,在我们只能通过数值逼近下降的方向或者是Hessian矩阵,但这种计算代价非常大。
  5. 由于Hessian矩阵通常很大,计算它的逆矩阵代价是非常大的,复杂度通常是 O ( p 3 ) O(p^3) O(p3)
    以上三个缺陷使我们在实际应用中,很难计算精确的Hessian矩阵,甚至连数值逼近都是很困难的(由于计算代价比较大)。因此,该文章提出了SDM方法,用数据来学习下降的方向。下面两张图可以用来初步表示牛顿步和SDM两种方法的基本原理。

image_1bc9q0m4l8s7dhk130utud1bl213.png-96.5kB

3.人脸对齐的几个概念(简单介绍)

在介绍SDM之前,还要先简单提一下人脸识别中人脸对齐的基本原理和相关的关键词,因为该SDM方法主要是在人脸对齐方面进行应用。
人脸对齐(Face Alignment)基本原理
基本概念人脸识别(face recognizaton)按顺序可以大体上分为四个部分,即人脸检测(face detection),人脸对齐(face alignment),人脸校验(face verification)和人脸识别(face identification)。 人脸检测就是在一张图片中找到人脸所处的位置,即将人脸圈出来,比如拍照时数码相机自动画出人脸。人脸对齐就是在已经检测到的人脸的基础上,自动找到人脸上的眼睛鼻子嘴和脸轮廓等标志性特征位置。人脸校验就是判断两张脸是不是同一个人。人脸识别就是给定一张脸,判断这张脸是谁。
本文研究其中的第二部分,人脸对齐
人脸对齐中的几个关键词:
形状(shape):形状就是人脸上的有特征的位置,如下图所示,每张图中所有黄点构成的图形就是该人脸的形状。
特征点(landmark):形状由特征点组成,图中的每一个黄点就是一个特征点。

image_1bc9qc9jl1ap9a2q8e31nn39q19.png-387.7kB

人脸对齐的最终目的就是在已知的人脸方框(一般由人脸检测确定人脸的位置)上定位其准确地形状。
人脸对齐的算法主要分为两大类:基于优化的方法(Optimization-based method)和基于回归的方法(Regression-based method)。
SDM方法属于基于回归的方法。
基于回归的方法的基本原理:对于一张给定的人脸,给出一个初始的形状,通过不断地迭代,将初始形状回归到接近甚至等于真实形状的位置。

4.Supervised Descent Method

给定一张含有m个像素的图片 d ∈ ℜ m × 1 d\in\Re^{m\times1} dm×1, d ( x ) ∈ ℜ p × 1 d(x)\in\Re^{p\times1} d(x)p×1表示该图片上的p个特征点, h ( ) h() h()表示一个非线性特征提取函数,比如 h ( d ( x ) ) ∈ ℜ 128 p × 1 h(d(x))\in\Re^{128p\times1} h(d(x))128p×1可以表示从p个特征点上提取出的SIFT特征,每个特征点提取出了128个SIFT特征。那么我们的目标就是,在给定一个初始形状 x 0 x_0 x0的基础上,通过回归的方法,将 x 0 x_0 x0回归到该人脸正确的形状 x ∗ x_* x上,用数学的方式表达,即为求得使下面的 f ( x 0 + Δ x ) f(x_0+\Delta x) f(x0+Δx)最小的 Δ x \Delta x Δx
f ( x 0 + Δ x ) = ∣ ∣ h ( d ( x 0 + Δ x ) ) − ϕ ∗ ∣ ∣ 2 2 (2) f(x_0+\Delta x)=||h(d(x_0+\Delta x))-\phi_*||_2^2\tag{2} f(x0+Δx)=h(d(x0+Δx))ϕ22(2)
其中 ϕ ∗ = h ( d ( x ∗ ) ) \phi_*=h(d(x_*)) ϕ=h(d(x))表示该人脸的真实特征点所提取出的SIFT特征,当然,上面说的是在预测时我们的目标,在预测时我们只有初始的 x 0 x_0 x0,而 Δ x \Delta x Δx ϕ ∗ \phi_* ϕ我们是不知道的。在训练时,我们是知道 Δ x \Delta x Δx ϕ ∗ \phi_* ϕ的,我们要在训练时训练得到一个良好的回归器,使它能够让初始的 x 0 x_0 x0一步步回归到正确的未知的形状上去。一般来说初始的 x 0 x_0 x0就是所有已知样本的真实形状的平均形状。示意图如下图所示。

image_1bcc8bb8i1rrh1nt61fpilrg1b979.png-106.6kB

那么问题来了,如果每一张脸的初始形状都是一样的(即都是已知样本的真实形状的平均形状),那么怎么让它们回归到各自人脸的真实形状呢,答案就是每张图片提取出的不同的SIFT特征(具体采用什么特征可以依据情况而定,论文中 采用了SIFT特征,但也可以采用如HOG,DOG,甚至LBF等特征)了,虽然采用了相同的初始形状,但在不同的图片上,相同的初始形状所提取出的SIFT特征是完全不同的,也就是 ϕ 0 \phi_0 ϕ0是不同的,这样就可以通过回归器将其回归到各自的真实形状上了。这一点通过上面的公式也能看出。

现在我们已经有了优化的目标,就是要得到一个回归器,这个回归器能起到的作用是将一个初始形状回归到真实形状上去。也就是学到正确的回归器使其得到最好的 Δ x \Delta x Δx 。当然想要从初始形状一步步回归到真实形状,只学习一个 Δ x \Delta x Δx一般是不行的,因为一步就回归到最小点一般来说要求比较高,即使是牛顿步回归的比较快,通常也不能一步就达到目标。所以我们要学习得到多个不同的回归器,它们依次回归下来,能得到一系列的 Δ x \Delta x Δx,这样我们就能很快根据 x k + 1 = x k + Δ x x_{k+1}=x_k+\Delta x xk+1=xk+Δx得到使目标函数最小的点。

下面从牛顿步开始引出SDM。
首先再写一遍目标函数,如下:
f ( x 0 + Δ x ) = ∣ ∣ h ( d ( x 0 + Δ x ) ) − ϕ ∗ ∣ ∣ 2 2 (3) f(x_0+\Delta x)=||h(d(x_0+\Delta x))-\phi_*||_2^2\tag{3} f(x0+Δx)=h(d(x0+Δx))ϕ22(3)
我们使用的是从初始特征点周围提取的SIFT特征作为第一次回归的输入,然而SIFT算子是不可导的,所以如果想要使用一阶或者二阶方法来最小化上面的目标函数,那就只能用数值逼近的方法来估计Jacobian和Hessian矩阵(比如有限差分方法等)。然而数值估计计算量非常大,所以我们要采用SDM方法来学习下降的方向和下降的尺度,或者说学习Jaobian和Hessian矩阵。

为了从牛顿步开始引出SDM,我们首先假设 h ( ) h() h()这个SIFT特征提取函数是二次可导的。这样才能计算Hessian矩阵。

以下部分推导和论文不同,论文中只给了结论,我补充了论文没有写的推导过程。同时优化了一下牛顿步的推导过程

第一步,我们首先获得一个初始的形状 x 0 x_0 x0,采用的方式是用所有训练样本的真实形状的平均形状给 x 0 x_0 x0赋值,也就是说我们迭代的初值为:
KaTeX parse error: \tag works only in display equations
接着就可以根据公式(3)计算 f ( x 0 ) f(x_0) f(x0),即令 Δ x = 0 \Delta x=0 Δx=0

现在我们已经有了 f ( x 0 ) f(x_0) f(x0),我们想要知道朝什么样的方向改变 x 0 x_0 x0并且改变多少 x 0 x_0 x0可以得到一个好的 f ( x 1 ) f(x_1) f(x1),使 f ( x 1 ) f(x_1) f(x1)尽量接近全局最小值,这里 f ( x 1 ) f(x_1) f(x1)= f ( x 0 + Δ x ) f(x_0+\Delta x) f(x0+Δx)

我们在 x 0 x_0 x0点对 f ( x ) f(x) f(x)进行二阶泰勒展开,如下:
f ( x ) = f ( x 0 ) + J f ( x 0 ) T ( x − x 0 ) + 1 2 ( x − x 0 ) T H ( x 0 ) ( x − x 0 ) + o ( ∣ x − x 0 ∣ 2 ) (5) f(x)=f(x_0)+J_f(x_0)^T(x-x_0)+\frac12(x-x_0)^TH(x_0)(x-x_0)+o(|x-x_0|^2)\tag{5} f(x)=f(x0)+Jf(x0)T(xx0)+21(xx0)TH(x0)(xx0)+o(xx02)(5)
等式最右边一项是高阶项,可以忽略。也就是说,我们要优化的目标,就是下面这个二次型,我们要极小化下面的二次型:
f ( x ) = f ( x 0 ) + J f ( x 0 ) T ( x − x 0 ) + 1 2 ( x − x 0 ) T H ( x 0 ) ( x − x 0 ) (6) f(x)=f(x_0)+J_f(x_0)^T(x-x_0)+\frac12(x-x_0)^TH(x_0)(x-x_0)\tag{6} f(x)=f(x0)+Jf(x0)T(xx0)+21(xx0)TH(x0)(xx0)(6)
因为要极小化 f ( x ) f(x) f(x),所以我们要对 x x x进行求导,并且令导数等于0,以此来求出优化的方向和大小,下面对每一项进行求导:
d f ( x ) d x = ∇ f ( x ) (7) \frac{d f(x)}{d x}=\nabla f(x)\tag{7} dxdf(x)=f(x)(7)
d f ( x 0 ) d x = 0 (8) \frac{d f(x_0)}{d x}=0\tag{8} dxdf(x0)=0(8)
d J f ( x 0 ) T ( x − x 0 ) d x = J f ( x 0 ) (9) \frac{d J_f(x_0)^T(x-x_0)}{d x}=J_f(x_0)\tag{9} dxdJf(x0)T(xx0)=Jf(x0)(9)
d 1 2 ( x − x 0 ) T H ( x 0 ) ( x − x 0 ) d x = 1 2 [ H ( x 0 ) + H ( x 0 ) T ] ( x − x 0 ) = H ( x 0 ) ( x − x 0 ) (10) \frac{d \frac12(x-x_0)^TH(x_0)(x-x_0)}{d x}=\frac12[H(x_0)+H(x_0)^T](x-x_0)=H(x_0)(x-x_0)\tag{10} dxd21(xx0)TH(x0)(xx0)=21[H(x0)+H(x0)T](xx0)=H(x0)(xx0)(10)
因此,求导后得到:
∇ f ( x ) = 0 + J f ( x 0 ) + H ( x 0 ) ( x − x 0 ) (11) \nabla f(x)=0+J_f(x_0)+H(x_0)(x-x_0)\tag{11} f(x)=0+Jf(x0)+H(x0)(xx0)(11)
令导数等于0,得:
∇ f ( x ) = J f ( x 0 ) + H ( x 0 ) ( x − x 0 ) = 0 (12) \nabla f(x)=J_f(x_0)+H(x_0)(x-x_0) = 0\tag{12} f(x)=Jf(x0)+H(x0)(xx0)=0(12)
可以解得:
x = x 0 − H − 1 ( x 0 ) J f ( x 0 ) (13) x=x_0-H^{-1}(x_0)J_f(x_0)\tag{13} x=x0H1(x0)Jf(x0)(13)

x 1 = x 0 − H − 1 ( x 0 ) J f ( x 0 ) (14) x_1=x_0-H^{-1}(x_0)J_f(x_0)\tag{14} x1=x0H1(x0)Jf(x0)(14)
这即得到牛顿步的表达式。
我们的第一次迭代的步长用牛顿步的方法求解就是:
Δ x 1 = − H − 1 ( x 0 ) J f ( x 0 ) (15) \Delta x_1=-H^{-1}(x_0)J_f(x_0)\tag{15} Δx1=H1(x0)Jf(x0)(15)
如果在目标函数二次可导的情况下,一直使用牛顿步计算出 Δ x 2 \Delta x_2 Δx2 Δ x 3 \Delta x_3 Δx3、…、 Δ x k \Delta x_k Δxk,那么可以根据更新表达式(如下)一直计算得到新的 x x x,直到得到最优解。
x k + 1 = x k + Δ x k (16) x_{k+1}=x_k+\Delta x_k\tag{16} xk+1=xk+Δxk(16)
不过使用牛顿步计算几个 Δ x \Delta x Δx就要算几次Jacobian和Hessian矩阵,计算量之大可想而知了,况且目标函数还不一定二次可导(之前的二次可导是我们假设的,现在我们将去掉二次可导这个约束条件)。

下面开始推导得到我们要的SDM的方法,是接着上面牛顿步的推导而来的:

首先引入矩阵的链式求导法则如下:
d f ( g ( x ) ) d x = d g T ( x ) d x d f ( g ) d g (17) \frac{df(g(x))}{dx}=\frac{dg^T(x)}{dx}\frac{df(g)}{dg}\tag{17} dxdf(g(x))=dxdgT(x)dgdf(g)(17)
应用矩阵的链式求导法则:
J f ( x 0 ) = d f ( x ) d x ∣ x = x 0 = d ∣ ∣ h ( d ( x ) ) − ϕ ∗ ∣ ∣ 2 2 d x ∣ x = x 0 = d ( ϕ x − ϕ ∗ ) T d x ∣ x = x 0 ⋅ d ∣ ∣ ϕ x − ϕ ∗ ∣ ∣ 2 2 d ( ϕ x − ϕ ∗ ) ∣ x = x 0 J_f(x_0)=\frac{d f(x)}{d x}|_{x=x_0}=\frac{d||h(d(x))-\phi_*||^2_2}{dx}|_{x=x_0}=\frac{d(\phi_x-\phi_*)^T}{dx}|_{x=x_0}\cdot\frac{d||\phi_x-\phi_*||^2_2}{d(\phi_x-\phi_*)}|_{x=x_0} Jf(x0)=dxdf(x)x=x0=dxdh(d(x))ϕ22x=x0=dxd(ϕxϕ)Tx=x0d(ϕxϕ)dϕxϕ22x=x0
(18) \tag{18} (18)
其中:
d ( ϕ x − ϕ ∗ ) T d x ∣ x = x 0 = d ϕ x T d x ∣ x = x 0 = d h T ( d ( x ) ) d x ∣ x = x 0 = J h T ( x 0 ) (19) \frac{d(\phi_x-\phi_*)^T}{dx}|_{x=x_0}=\frac{d\phi_x^T}{dx}|_{x=x_0}=\frac{dh^T(d(x))}{dx}|_{x=x_0}=J_h^T(x_0)\tag{19} dxd(ϕxϕ)Tx=x0=dxdϕxTx=x0=dxdhT(d(x))x=x0=JhT(x0)(19)
d ∣ ∣ ϕ x − ϕ ∗ ∣ ∣ 2 2 d ( ϕ x − ϕ ∗ ) ∣ x = x 0 = d [ ( ϕ x − ϕ ∗ ) T ( ϕ x − ϕ ∗ ) ] d ( ϕ x − ϕ ∗ ) ∣ x = x 0 = 2 ( ϕ x − ϕ ∗ ) ∣ x = x 0 = 2 ( ϕ 0 − ϕ ∗ ) (20) \frac{d||\phi_x-\phi_*||_2^2}{d(\phi_x-\phi_*)}|_{x=x_0}=\frac{d[(\phi_x-\phi_*)^T(\phi_x-\phi_*)]}{d(\phi_x-\phi_*)}|_{x=x_0}=2(\phi_x-\phi_*)|_{x=x_0}=2(\phi_0-\phi_*)\tag{20} d(ϕxϕ)dϕxϕ22x=x0=d(ϕxϕ)d[(ϕxϕ)T(ϕxϕ)]x=x0=2(ϕxϕ)x=x0=2(ϕ0ϕ)(20)
所以:
J f ( x 0 ) = 2 J h T ( x 0 ) ( ϕ 0 − ϕ ∗ ) (21) J_f(x_0)=2J^T_h(x_0)(\phi_0-\phi_*)\tag{21} Jf(x0)=2JhT(x0)(ϕ0ϕ)(21)
因此
x = x 0 − H − 1 ( x 0 ) J f ( x 0 ) = x 0 − 2 H − 1 ( x 0 ) J h T ( x 0 ) ( ϕ 0 − ϕ ∗ ) (22) x=x_0-H^{-1}(x_0)J_f(x_0)=x_0-2H^{-1}(x_0)J^T_h(x_0)(\phi_0-\phi_*)\tag{22} x=x0H1(x0)Jf(x0)=x02H1(x0)JhT(x0)(ϕ0ϕ)(22)
所以我们的SDM方法的 Δ x 1 \Delta x_1 Δx1为:
Δ x 1 = − 2 H − 1 ( x 0 ) J h T ( x 0 ) ( ϕ 0 − ϕ ∗ ) (23) \Delta x_1=-2H^{-1}(x_0)J^T_h(x_0)(\phi_0-\phi_*)\tag{23} Δx1=2H1(x0)JhT(x0)(ϕ0ϕ)(23)
看起来好像和牛顿步的 Δ x 1 = − H − 1 ( x 0 ) J f ( x 0 ) \Delta x_1=-H^{-1}(x_0)J_f(x_0) Δx1=H1(x0)Jf(x0)区别不大,然而接下来就会看到区别:
Δ x 1 = − 2 H − 1 ( x 0 ) J h T ( x 0 ) ( ϕ 0 − ϕ ∗ ) = Δ x 1 = − 2 H − 1 ( x 0 ) J h T ( x 0 ) ϕ 0 + 2 H − 1 ( x 0 ) J h T ( x 0 ) ϕ ∗ \Delta x_1=-2H^{-1}(x_0)J^T_h(x_0)(\phi_0-\phi_*)=\Delta x_1=-2H^{-1}(x_0)J^T_h(x_0)\phi_0+2H^{-1}(x_0)J^T_h(x_0)\phi_* Δx1=2H1(x0)JhT(x0)(ϕ0ϕ)=Δx1=2H1(x0)JhT(x0)ϕ0+2H1(x0)JhT(x0)ϕ
(24) \tag{24} (24)
R 0 = − 2 H − 1 ( x 0 ) J h T ( x 0 ) R_0=-2H^{-1}(x_0)J^T_h(x_0) R0=2H1(x0)JhT(x0) b 0 = 2 H − 1 ( x 0 ) J h T ( x 0 ) ϕ ∗ b_0=2H^{-1}(x_0)J^T_h(x_0)\phi_* b0=2H1(x0)JhT(x0)ϕ,可将上式表示成:
Δ x 1 = R 0 ϕ 0 + b 0 (25) \Delta x_1=R_0\phi_0+b_0\tag{25} Δx1=R0ϕ0+b0(25)
也就是说,第一次增量 Δ x 1 \Delta x_1 Δx1变成了特征 ϕ 0 \phi_0 ϕ0的一次函数,而我们只需要知道 R 0 R_0 R0 b 0 b_0 b0就可以直接算出第一次的增量 Δ x 1 \Delta x_1 Δx1!!!
也许有人会问,但是根据你前面的公式,你的 R 0 R_0 R0 b 0 b_0 b0也是在计算Jacobian和Hessian矩阵的基础上计算出来的啊,说的没错,但既然现在已经将目标 Δ x 1 \Delta x_1 Δx1写成了 ϕ 0 \phi_0 ϕ0的一次函数,我们计算的 R 0 R_0 R0 b 0 b_0 b0难道还要绕回去算Jacobian和Hessian矩阵么,当然不可能了,我们只需要用我们最常用的方法,最小二乘即可!!
即最小化下面这个目标函数:
l o s s = ∣ ∣ Δ x 1 − R 0 ϕ 0 − b 0 ∣ ∣ 2 2 (26) loss=||\Delta x_1-R_0\phi_0-b_0||_2^2\tag{26} loss=Δx1R0ϕ0b022(26)
此时可以由最小二乘的公式直接得到 R 0 R_0 R0 b 0 b_0 b0,这里就不写了。
得到了 R 0 R_0 R0 b 0 b_0 b0,也就可以依法得到 R 1 R_1 R1 b 1 b_1 b1、…、 R k R_k Rk b k b_k bk,也就可以算出对应的的 Δ x 2 \Delta x_2 Δx2、…、 Δ x k + 1 \Delta x_{k+1} Δxk+1,这些 Δ x \Delta x Δx就是我们要的每一次的 x x x的变化方向和变化的尺度,也是根据更新公式更新,直到得到最小点的 x x x

有了 R 1 R_1 R1 b 1 b_1 b1、…、 R k R_k Rk b k b_k bk,在测试样本进行回归的时候,就可以直接进行回归。

下图是作者做的对比试验(控制的变量是特征提取函数 h ( ) h() h()不同)
有图可见,SDM的收敛速度比牛顿步更快,只是收敛得最终结果并没有达到最优(比牛顿步差一点),但SDM更具鲁棒性,在函数的Hessian矩阵不是正定的时候,SDM也能很快收敛。
image_1bcci8ea41t8dllh1qbovum1u4sm.png-70.5kB
做个总结:
SDM方法在更新 x x x时,就是将更新的增量 Δ x \Delta x Δx的计算方法进行了改变,由牛顿步的计算Jacobian和Hessian矩阵来得到增量 Δ x \Delta x Δx,变成了计算 R k R_k Rk b k b_k bk来得到增量 Δ x \Delta x Δx,通过推导将每一次的增量 Δ x \Delta x Δx变成了该次输入的特征 ϕ \phi ϕ的一次函数,并通过最小二乘直接计算一次函数的系数 R k R_k Rk b k b_k bk,大大减少了计算量。

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值