Hadoop实际应用场景,阿里和百度

转载 2013年12月06日 10:04:52

[Hadoop] 实际应用场景之 - 阿里

Hadoop在淘宝和支付宝的应用从09年开始,用于对海量数据的离线处理,例如对日志的分析,也涉及内容部分,结构化数据等。使用Hadoop主要基于可扩展性的考虑,规模从当初的3-4百节点增长到今天单一集群3000节点以上,2-3个集群,支付宝的集群规模也达700台,使用Hbase,个人消费记录,key-value型。

阿里对Hadoop的源码做了如下修改:

  • 改进Namenode单点问题
  • 增加安全性
  • 改善Hbase的稳定性
  • 改进反哺Hadoop社区
阿里数据处理的整体架构图如下:

架构分为五层,分别是数据源、计算层、存储层、查询层和产品层。
  • 数据源:这里有淘宝主站的用户、店铺、商品和交易等数据库,还有用户的浏览、搜索等行为日志等。这一系列的数据是数据产品最原始的生命力所在。
  • 计算层:在数据源层实时产生的数据,通过淘宝主研发的数据传输组件DataX、DbSync和Timetunnel准实时地传输到Hadoop集群“云梯”,是计算层的主要组成部分。在“云梯”上,每天有大约40000个作业对1.5PB的原始数据按照产品需求进行不同的MapReduce计算。一些对实效性要求很高的数据采用“云梯”来计算效率比较低,为此做了流式数据的实时计算平台,称之为“银河”。“银河”也是一个分布式系统,它接收来自TimeTunnel的实时消息,在内存中做实时计算,并把计算结果在尽可能短的时间内刷新到NoSQL存储设备中,供前端产品调用。
  • 存储层:针对前端产品设计了专门的存储层。在这一层,有基于MySQL的分布式关系型数据库集群MyFOX和基于HBase的NoSQL存储集群Prom。
MyFOX的结构图如下:

Prom(即普罗米修斯)结构图如下:

  • 查询层(glider)

  • 产品层:数据魔方、量子恒道等


[Hadoop] 实际应用场景之 - 百度

百度在2008年就开始使用Hadoop作为其离线数据分析平台,从Hadoop v0.18/0.19开始,300台机器,2个集群,现在的规模为2W台节点以上,最大集群接近4,000节点,每日处理数据20PB+,每日作业数120,000+

Hadoop在百度主要用于如下场景:

  • 日志的存储和统计;
  • 网页数据的分析和挖掘;
  • 商业分析,如用户的行为和广告关注度等;
  • 在线数据的反馈,及时得到在线广告的点击情况;
  • 用户网页的聚类,分析用户的推荐度及用户之间的关联度。


百度和其它公司对Hadoop的应用最大的不同是对源代码做了大量的修改,当Hadoop 2.0官方版本还没有出来时,百度就已经在开发自己的Hadoop 2.0,如下图所示:


HDFS 1.0面临的问题有:
  • 集群规模大,Namenode响应变慢
  • Namenode单点,切换时间太长
  • 没有数据压缩
  • Namespace过于耗用资源
百度自己开发的HDFS 2.0改进了如下功能:
  • Namenade热备切换
  • 分钟级别切换
  • 最坏情况,可能丢失1分钟数据
  • 透明数据压缩(利用CPU低谷时压缩、长时间未使用的块才压缩等)
MapReduce 1.0面临的问题有:
  • JobTracker单点问题
  • 资源粒度过粗(slot)
  • 资源利用率不高
百度自己开发的MapReduce 2.0改进了如下功能:
  • 可扩展性强(支持万台节点以上)
  • 架构松耦合,支持多种计算框架
  • 可支持热升级
  • 更精细的资源控制
  • MR优化:Shuffle独立/Task同质调度
举报

相关文章推荐

Hadoop实际应用场景,阿里和百度

[Hadoop] 实际应用场景之 - 阿里 Hadoop在淘宝和支付宝的应用从09年开始,用于对海量数据的离线处理,例如对日志的分析,也涉及内容部分,结构化数据等。使用Hadoop主要基于可扩展性...

[Hadoop] 实际应用场景之 - 阿里

Hadoop在淘宝和支付宝的应用从09年开始,用于对海量数据的离线处理,例如对日志的分析,也涉及内容部分,结构化数据等。使用Hadoop主要基于可扩展性的考虑,规模从当初的3-4百节点增长到今天单一集...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

[Hadoop] 实际应用场景之 - 百度

百度在2008年就开始使用Hadoop作为其离线数据分析平台,从Hadoop v0.18/0.19开始,300台机器,2个集群,现在的规模为2W台节点以上,最大集群接近4,000节点,每日处理数据20...

Redis实际应用场景

Redis实际应用场景

Scala的实际应用场景

一般程序员对Functional Programming针对Scala
  • kmtong
  • kmtong
  • 2014-08-11 11:28
  • 2369

RxJava + Retrofit 的实际应用场景

前提需要知道什么是 RxJava 这里推荐下 扔物线写的 给 Android 开发者的 RxJava 详解 再感谢 RxJava 与 Retrofit 结合的最佳实践 这篇满满的干货。实战准备项目...

java Hashcode实际应用场景

Hashcode实际应用场景 Hashcode public int hashCode() 以前一直觉得几乎不太可能会用到hashcode,所以一直写bean没有覆盖hashcode()方法 ...

hadoop在国内的应用,百度,阿里

Hadoop在淘宝和支付宝的应用从09年开始,用于对海量数据的离线处理,例如对日志的分析,也涉及内容部分,结构化数据等。使用Hadoop主要基于可扩展性的考虑,规模从当初的3-4百节点增长到今天单一集...

hadoop应用场景总结

我个人接触hadoop仅仅不到一年,因为是业余时间学习,故进度较慢,看过好多视频,买过好多书,学过基本知识,搭建过伪分布式集群,有过简单的教程式开发,恰逢毕业季,面试过相关岗位,自认为路还很远,还需一...

Hadoop的应用场景

其实我们要知道大数据的实质特性:针对增量中海量的结构化,非结构化,半结构数据,在这种情况下,如何快速反复计算挖掘出高效益的市场数据?       带着这个问题渗透到业务中去分析,就知道hadoop需...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)