READING NOTE: Semantic Object Parsing with Graph LSTM

原创 2016年05月30日 20:34:59

TITLE: Semantic Object Parsing with Graph LSTM

AUTHER: Xiaodan Liang, Xiaohui Shen, Jiashi Feng, Liang Lin, Shuicheng Yan

ASSOCIATION: National University of Singapore, Sun Yat-sen University, Adobe Research

FROM: arXiv:1603.07063

CONTRIBUTIONS

  1. A novel Graph LSTM structure is proposed handle general graph-structured data, which effectively exploits global context by superpixels extracted by over-segmentation.
  2. A confidence-driven scheme is proposed to select the starting node and the order of updating sequences.
  3. In each Graph LSTM unit, different forget gates for the neighboring nodes are learned to dynamically incorporate the local contextual interactions in accordance with their semantic relations.

METHOD

The main steps of the method is shown in the following figure.

  1. The input image first passes through a stack of convolutional layers to generate the convolutional feature maps.
  2. The convolutional feature maps are further used to generate an initial semantic confidence map for each pixel.
  3. The input image is over-segmented to multiple superpixels. For each superpixel, a feature vector is extracted from the upsampled convolutional feature maps.
  4. The first Graph LSTM takes the feature vector of every superpixel as input to compute a better state.
  5. The second Graph LSTM takes the feature vector of every superpixel and the output of first Graph LSTM as input.
  6. The update sequence of the superpixel is according to the initial confidence of the superpiexels.
  7. several 1×1 convolution filters are employed to produce the final parsing results.

some details

A graph structure is built based on the superpixels. The nodes are the superpixels and the nodes are linked when they are adjacent. The history information used by the G-LSTM for one superpixel come from the adjacent superpixels.

ADVANTAGES

  1. Constructed on superpixels generated by oversegmentation, the Graph LSTM is more naturally aligned with the visual patterns in the image.
  2. Adaptively learning the forget gates with respect to different neighboring nodes when updating the hidden states of a certain node is beneficial to model various neighbor connections.
版权声明:本文为博主原创文章,未经博主允许不得转载。欢迎访问博主个人主页 http://joshua881228.webfactional.com/

相关文章推荐

综述:计算机视觉中RNN应用于目标识别

深度学习在计算机视觉领域取得的巨大的发展,最近几年CNN一直是目前主流模型所采取的架构。最近半年RNN/LSTM应用在识别领域逐渐成为一种潮流,RNN在获取目标的上下文中较CNN有独特的优势。以下我们...

READING NOTE: FastMask: Segment Multi-scale Object Candidates in One Shot

TITLE: FastMask: Segment Multi-scale Object Candidates in One Shot

Latent semantic analysis note

  • 2011年05月16日 21:45
  • 721KB
  • 下载

Latent semantic analysis note(LSA)

1 LSA Introduction LSA(latent semantic analysis)潜在语义分析,也被称为LSI(latent semantic index),是Scott ...

潜在语义分析Latent semantic analysis note(LSA)原理及代码实现

Latent Semantic Analysis (LSA)也被叫做Latent Semantic Indexing(LSI),从字面上的意思理解就是通过分析文档去发现这些文档中潜在的意思和概念。假设...
  • bob007
  • bob007
  • 2014年06月13日 16:40
  • 10477

[Paper note] RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

paper not for RefineNet
  • chn13
  • chn13
  • 2016年12月23日 13:24
  • 1137

Latent semantic analysis note(LSA)

1 LSA Introduction LSA(latent semantic analysis)潜在语义分析,也被称为LSI(latent semantic index),是Scott ...

Latent semantic analysis note(LSA)

1 LSA Introduction LSA(latent semantic analysis)潜在语义分析,也被称为LSI(latent semantic index),是Scott Deer...

Two-Scale Particle Simulaton--READING NOTE

Overview:1、two simulations with different resolution scales, a low-resolution L and a high-resolutio...

My note for reading English reference

Core Java Volume II-Advanced Features for    , please contact: visit us on the web: oracle ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:READING NOTE: Semantic Object Parsing with Graph LSTM
举报原因:
原因补充:

(最多只允许输入30个字)