READING NOTE: Semantic Object Parsing with Graph LSTM

TITLE: Semantic Object Parsing with Graph LSTM

AUTHER: Xiaodan Liang, Xiaohui Shen, Jiashi Feng, Liang Lin, Shuicheng Yan

ASSOCIATION: National University of Singapore, Sun Yat-sen University, Adobe Research

FROM: arXiv:1603.07063

CONTRIBUTIONS

  1. A novel Graph LSTM structure is proposed handle general graph-structured data, which effectively exploits global context by superpixels extracted by over-segmentation.
  2. A confidence-driven scheme is proposed to select the starting node and the order of updating sequences.
  3. In each Graph LSTM unit, different forget gates for the neighboring nodes are learned to dynamically incorporate the local contextual interactions in accordance with their semantic relations.

METHOD

The main steps of the method is shown in the following figure.

  1. The input image first passes through a stack of convolutional layers to generate the convolutional feature maps.
  2. The convolutional feature maps are further used to generate an initial semantic confidence map for each pixel.
  3. The input image is over-segmented to multiple superpixels. For each superpixel, a feature vector is extracted from the upsampled convolutional feature maps.
  4. The first Graph LSTM takes the feature vector of every superpixel as input to compute a better state.
  5. The second Graph LSTM takes the feature vector of every superpixel and the output of first Graph LSTM as input.
  6. The update sequence of the superpixel is according to the initial confidence of the superpiexels.
  7. several 1×1 convolution filters are employed to produce the final parsing results.

some details

A graph structure is built based on the superpixels. The nodes are the superpixels and the nodes are linked when they are adjacent. The history information used by the G-LSTM for one superpixel come from the adjacent superpixels.

ADVANTAGES

  1. Constructed on superpixels generated by oversegmentation, the Graph LSTM is more naturally aligned with the visual patterns in the image.
  2. Adaptively learning the forget gates with respect to different neighboring nodes when updating the hidden states of a certain node is beneficial to model various neighbor connections.
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Graph LSTM的代码实现可以使用torch库中的nngraph模块来完成。下面是一个示例代码,用于实现一个具有三个输入和一个输出的Graph LSTM模块: ```lua require 'nngraph' -- 定义输入节点 x1=nn.Identity()() x2=nn.Identity()() x3=nn.Identity()() -- 定义Graph LSTM模块 L=nn.CAddTable()({x1,nn.CMulTable()({x2,nn.Linear(20,10)(x3)})}) mlp=nn.gModule({x1,x2,x3},{L}) ``` 在这个示例中,我们首先使用`nn.Identity()`来定义三个输入节点x1、x2和x3。然后,我们使用`nn.Linear(20,10)`定义一个线性层,将x3作为输入,并将其与x2相乘。接下来,我们使用`nn.CMulTable()`将x2与线性层的输出相乘。最后,我们使用`nn.CAddTable()`将x1和乘法结果相加,作为Graph LSTM模块的输出L。最后,我们使用`nn.gModule()`将输入节点和输出节点包装成一个可执行的图模块。 这只是一个简单的示例代码,具体的Graph LSTM实现可能会根据具体任务和需求有所不同。但是,这个示例代码可以作为一个起点,帮助你开始实现自己的Graph LSTM模块。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [《Semantic Object Parsing with Graph LSTM》--论文阅读笔记](https://blog.csdn.net/LIYUO94/article/details/105945790)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* [好文!使用Torch nngraph实现LSTM](https://blog.csdn.net/tiaojingtao1293/article/details/81207532)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值