关闭

Factorials_usaco3.2_数论?暴力!

标签: 数论暴力c++usaco
167人阅读 评论(0) 收藏 举报
分类:

题目描述 Description


N的阶乘写作N!表示小于等于N的所有正整数的乘积。阶乘会很快的变大,如13!就必须用32位整数类型来存储,70!即使用浮点数也存不下了。你的任务是找到阶乘最后面的非零位。举个例子,5!=1*2*3*4*5=120所以5!的最后面的非零位是2,7!=1*2*3*4*5*6*7=5040,所以最后面的非零位是4。

输入描述 Input Description


共一行,一个整数不大于4220的整数N

输出描述 Output Description


共一行,输出N!最后面的非零位。

题解 Problem Analysis


根据常识可得:
10=25=101
必须剔除含有因数2、5的数字
然而
直接暴力去一下末尾的0就可以了,对答案有贡献的只有从右往左的第一个数字

暴力大法好!

然而
还有规律可循
把阶乘分成组,则有:
ans=n!  mod 10=(12345678910)(11121314151617181920)......mod 10
以此类推
我们要去掉末尾的0
ans=n! mod 10=(123456789)(111213141516171819)...... mod 10
不难看出答案只和所有因数的最后一位非零位有关,即上式可以写成:
ans=(123456789)(123456789)......mod10
然后它就变成了一个神奇的环
于是我们只要找到末尾剩下几个就可以了
然而我并没有实现\ 这不重要 /

程序 Code


/*
ID:wjp13241
PROG:fact4
LANG:C++
*/
#include <stdio.h>
using namespace std;
int main()
{
    freopen("fact4.in","r",stdin);
    freopen("fact4.out","w",stdout);
    int n;
    long long ans=1;
    scanf("%d",&n);
    for (int i=2;i<=n;i++)
    {
        ans*=i;
        while (ans%10==0)
            ans/=10;
        ans=ans%10000000000;
    }
    printf("%lld\n",ans%10);
    return 0;
}
1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:83487次
    • 积分:5218
    • 等级:
    • 排名:第5859名
    • 原创:436篇
    • 转载:7篇
    • 译文:0篇
    • 评论:25条
    联系我
    QQ:315253566
    最新评论