问题描述 :
N的阶乘写作N!表示小于等于N的所有正整数的乘积。阶乘会很快的变大,如13!就必须用32位整数类型来存储,70!即使用浮点数也存不下了。你的任务是找到阶乘最后面的非零位。举个例子,5!=12345=120所以5!的最后面的非零位是2,7!=1234567=5040,所以最后面的非零位是4。
输入说明 :
一个不大于1000的整数N。
输出说明 :
共一行,输出N!最后面的非零位。
输入范例 :
7
输出范例 :
4
问题分析:
简单来看,积的最后一位可由两个乘数最后一个非零位的乘积得来,例如
120 * 6=720.由26就可得到积的最后一位。但是这是远远不够的,加入两个数分别为18,25;1825=450最后一位为5。如果你只取前边的结果5作为另一个乘数,结果为18*5=90,最后取得的数为9,因此结果不对。正因为这种情况的存在,就需要上一位结果保留的非零位数需要多几位(具体看代码)。
代码:
#include <iostream>
#include<iomanip>
#include <cmath>
#include<bits/stdc++.h>
#include <stack>
using namespace std;
int main()
{
int k;
cin>>k;
int result=1;
for(int i=1;i<=k;i++){
result=result*i;
//处理结果,找到最后一个非0数字
while(result%10==0)
{
result=result/10;
}
//此处需要保留多位,防止上述情况发生,int范围很大的,这点不算啥。还能更大
result=result%10000;
//cout<<result<<endl;
}
cout<<result%10;
return 0;
}