Android视频编码——RGBA、RGB、BGRA、BGR转YUV420P、YUV420SP

本文介绍了视频处理中常用的RGBA与YUV颜色格式之间的转换原理,并提供了高效的JNI实现代码示例,展示了如何通过位操作避免浮点运算提高性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

做视频处理一般都会涉及到RGBA与YUV颜色格式的相互转换,理论知识就不多说了,直接贴出转换公式来:

Y’= 0.299*R’ + 0.587*G’ + 0.114*B’
U’= -0.147*R’ - 0.289*G’ + 0.436*B’ = 0.492*(B’- Y’)
V’= 0.615*R’ - 0.515*G’ - 0.100*B’ = 0.877*(R’- Y’)
R’ = Y’ + 1.140*V’
G’ = Y’ - 0.394*U’ - 0.581*V’
B’ = Y’ + 2.032*U’

根据公式,写出相应的代码就OK了。当然编码需要考虑效率问题,在转换运算中应该尽量避免浮点运算。以下代码实现相对简介,效率也还可以,如果需要更高的转换效率,可以用空间换时间,采用查表法来做。如果有更好的方法,希望可以指点我一下,感激不尽。
JNI实现代码如下:

#include "jni.h"

#define max(x,y)  (x>y?x:y)
#define min(x,y)  (x<y?x:y)
#define y(r,g,b)  (((66 * r + 129 * g + 25 * b + 128) >> 8) + 16)
#define u(r,g,b)  (((-38 * r - 74 * g + 112 * b + 128) >> 8) + 128)
#define v(r,g,b)  (((112 * r - 94 * g - 18 * b + 128) >> 8) + 128)
#define color(x)  ((unsigned char)((x < 0) ? 0 : ((x > 255) ? 255 : x)))

#define RGBA_YUV420SP   0x00004012
#define BGRA_YUV420SP   0x00004210
#define RGBA_YUV420P    0x00014012
#define BGRA_YUV420P    0x00014210
#define RGB_YUV420SP    0x00003012
#define RGB_YUV420P     0x00013012
#define BGR_YUV420SP    0x00003210
#define BGR_YUV420P     0x00013210

/**
*   type 0-3位表示b的偏移量
*        4-7位表示g的偏移量
*        8-11位表示r的偏移量
*        12-15位表示rgba一个像素所占的byte
*        16-19位表示yuv的类型,0为420sp,1为420p
*/

void rgbaToYuv(int width,int height,unsigned char * rgb,unsigned char * yuv,int type){
    const int frameSize = width * height;
    const int yuvType=(type&0x10000)>>16;
    const int byteRgba=(type&0x0F000)>>12;
    const int rShift=(type&0x00F00)>>8;
    const int gShift=(type&0x000F0)>>4;
    const int bShift= (type&0x0000F);
    const int uIndex=0;
    const int vIndex=yuvType; //yuvType为1表示YUV420p,为0表示420sp

    int yIndex = 0;
    int uvIndex[2]={frameSize,frameSize+frameSize/4};

    unsigned char R, G, B, Y, U, V;
    unsigned int index = 0;
    for (int j = 0; j < height; j++) {
       for (int i = 0; i < width; i++) {
           index = j * width + i;

           R = rgb[index*byteRgba+rShift]&0xFF;
           G = rgb[index*byteRgba+gShift]&0xFF;
           B = rgb[index*byteRgba+bShift]&0xFF;

           Y = y(R,G,B);
           U = u(R,G,B);
           V = v(R,G,B);

           yuv[yIndex++] = color(Y);
           if (j % 2 == 0 && index % 2 == 0) {
               yuv[uvIndex[uIndex]++] =color(U);
               yuv[uvIndex[vIndex]++] =color(V);
           }
       }
    }
}


extern "C" {

    void Java_com_aiya_jni_DataConvert_rgbaToYuv
      (JNIEnv * env, jobject obj, jbyteArray rgba, jint width, jint height,
      jbyteArray yuv,jint type){
        jbyte * rgbaBuffer = env->GetByteArrayElements(rgba,0);
        unsigned char * cRgba=(unsigned char *)rgbaBuffer;
        jbyte* yuvBuffer = env->GetByteArrayElements(yuv,0);
        unsigned char * cYuv=(unsigned char *)yuvBuffer;
        rgbaToYuv(width,height,cRgba,cYuv,type);
        env->ReleaseByteArrayElements(rgba, rgbaBuffer, 0);
        env->ReleaseByteArrayElements(yuv, yuvBuffer, 0);
    }

}
<think>好的,我现在需要帮助用户了解如何在Android上使用libYuv实现RGBBGR换。首先,我得回忆一下libYuv的基本知识。libYuv是Google开源的库,主要用于处理YUV数据的换和缩放,但好像也支持一些RGB格式的操作。不过用户的问题是关于RGBBGR的,这可能涉及到颜色通道的交换。 首先,我需要确认libYuv是否直接支持RGBBGR换。通常,RGBBGR的区别在于红蓝通道的交换,所以可能需要使用特定的换函数。例如,如果原始格式是RGB24,目标格式是BGR24,可能需要使用函数来交换R和B通道。这时候,我应该查阅libYuv的文档或者源代码,看看是否有现成的函数,比如RGB24ToBGR24或者类似的函数。 如果libYuv没有直接的函数,可能需要手动交换通道,或者使用libYuv的其他函数组合实现。例如,先将RGB成ARGB,再通过某种方式交换通道,然后再BGR。不过这样可能效率不高,但可能可行。 接下来,用户的问题涉及到Android平台,所以需要考虑如何将libYuv集成到Android项目中。通常是通过NDK编译libYuv的源码,生成静态库或动态库,然后在JNI层调用相关函数。用户可能需要配置CMake或Android.mk来包含libYuv的源码。 然后,具体到代码层面,用户需要获取RGB数据,通常是byte数组,然后调用libYuv换函数。例如,假设输入是RGB24,输出是BGR24,可能需要调用RGB24ToBGR24函数。需要确认函数的参数,比如输入指针、输出指针、宽度、高度,以及可能需要的stride参数(行跨度)。如果图像的宽度不是对齐的,可能需要处理padding的情况。 另外,需要注意数据的内存布局。RGB24通常是每个像素3字节,依次是R、G、B,而BGR24则是B、G、R。因此,换函数可能需要遍历每个像素,交换第一个和第三个字节。这个过程如果是用libYuv的函数内部优化过的话,效率会比较高,比手动用Java或C++代码处理要快很多,尤其是在处理大图像时。 还有可能的错误点:比如数据指针是否正确,宽度和高度是否正确,是否处理了可能的对齐问题,以及颜色通道的顺序是否符合预期。例如,某些情况下,输入的RGB可能是RGB565或其他格式,而非24位,这时候需要不同的处理方式。因此,用户需要明确自己输入的RGB格式,是否是RGB24、RGB565、RGBA等,并选择对应的libYuv函数。 另外,如果用户需要实时处理,比如视频流中的每一帧,那么性能就非常重要。使用libYuv的NEON优化代码会显著提升速度,尤其是在移动设备上。因此,确保libYuv在编译时启用了NEON指令集的支持。 总结步骤大概是: 1. 集成libYuvAndroid项目,通过NDK编译。 2. 确定输入和输出的RGB/BGR格式,找到对应的换函数。 3. 在JNI中编写native代码,调用libYuv函数,传入正确的参数。 4. 处理内存管理,确保输入和输出的缓冲区正确分配和释放。 5. 测试换结果,验证颜色通道是否交换正确,是否有图像扭曲或颜色失真的问题。 如果遇到问题,可能需要检查libYuv的版本,查看相关函数的文档或源码,或者查找是否有其他开发者遇到类似的问题。例如,某些情况下可能需要先换到ARGB作为中间格式,再成目标格式。或者如果libYuv没有直接的支持,可能需要自己实现通道交换,但这样可能会牺牲性能。</think>在Android中使用libYuv实现RGBBGR换,需通过以下步骤完成: --- ### 一、环境准备 1. **集成libYuv库** - 在项目的`CMakeLists.txt`中添加libYuv源码或预编译库: ```cmake add_library(libyuv STATIC IMPORTED) set_target_properties(libyuv PROPERTIES IMPORTED_LOCATION ${path_to_libyuv.a}) ``` - 或直接包含libYuv源码到项目中(推荐)。 2. **配置JNI接口** - 创建JNI函数桥接Java与C++代码。 --- ### 二、核心换逻辑 libYuv提供`ARGBToRGB24`/`ARGBToBGR24`等函数,但RGBBGR的直接换需通道交换。以下为典型场景: #### 场景1:RGB24 ↔ BGR24 若输入为`RGB24`格式(每个像素3字节,排列为`R-G-B`),目标输出为`BGR24`(排列为`B-G-R`): ```cpp #include "libyuv/convert_argb.h" void RGB24ToBGR24(const uint8_t* rgb_data, uint8_t* bgr_data, int width, int height) { // 使用libYuvRGB24ToBGR24函数(需确认函数是否存在) // 若无直接函数,可通过ARGB实现: int src_stride = width * 3; int dst_stride = width * 3; // 分配临时ARGB缓冲区 uint8_t* argb_buffer = new uint8_t[width * height * 4]; // RGB24ARGB(假设无Alpha通道) libyuv::RGB24ToARGB(rgb_data, src_stride, argb_buffer, width * 4, width, height); // ARGBBGR24(交换R/B通道) libyuv::ARGBToBGR24(argb_buffer, width * 4, bgr_data, dst_stride, width, height); delete[] argb_buffer; } ``` #### 场景2:RGBABGRA(带Alpha通道) 若输入为`RGBA_8888`,目标为`BGRA_8888`: ```cpp void RGBAtoBGRA(const uint8_t* rgba, uint8_t* bgra, int width, int height) { libyuv::ARGBToBGRA(rgba, width * 4, bgra, width * 4, width, height); } ``` --- ### 三、JNI层封装 1. **Native方法声明(Java层)** ```java public class ImageConverter { static { System.loadLibrary("image-converter"); } public static native void rgb24ToBgr24(byte[] input, byte[] output, int width, int height); } ``` 2. **JNI实现(C++层)** ```cpp #include <jni.h> extern "C" JNIEXPORT void JNICALL Java_com_example_ImageConverter_rgb24ToBgr24(JNIEnv* env, jclass clazz, jbyteArray input, jbyteArray output, jint width, jint height) { jbyte* src = env->GetByteArrayElements(input, nullptr); jbyte* dst = env->GetByteArrayElements(output, nullptr); RGB24ToBGR24(reinterpret_cast<uint8_t*>(src), reinterpret_cast<uint8_t*>(dst), width, height); env->ReleaseByteArrayElements(input, src, JNI_ABORT); env->ReleaseByteArrayElements(output, dst, 0); } ``` --- ### 四、注意事项 1. **格式一致性** - 确认输入数据的真实格式(如`RGB24`/`RGBA_8888`等)。 - 检查libYuv函数支持的格式列表(参考[官方文档](https://chromium.googlesource.com/libyuv/libyuv/+/HEAD/docs.md))。 2. **性能优化** - 避免频繁内存分配,复用缓冲区。 - 确保libYuv编译时启用NEON指令集。 3. **测试验证** - 使用测试图像检查输出颜色是否正确(如纯红色`0xFF0000`应变为`0x0000FF`)。 --- ### 五、替代方案 若libYuv无直接换函数,可手动交换R/B通道: ```cpp void ManualRGB24ToBGR24(uint8_t* rgb, uint8_t* bgr, int width, int height) { int total_pixels = width * height; for (int i = 0; i < total_pixels; ++i) { bgr[i*3] = rgb[i*3 + 2]; // B <- R bgr[i*3 + 1] = rgb[i*3 + 1]; // G不变 bgr[i*3 + 2] = rgb[i*3]; // R <- B } } ``` 但此方法效率较低,建议优先使用libYuv优化函数。
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

求闲

一杯茶,一包烟,一杯咖啡坐一天

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值