Yemiekai
码龄9年
关注
提问 私信
  • 博客:186,499
    186,499
    总访问量
  • 28
    原创
  • 1,596,790
    排名
  • 256
    粉丝
  • 2
    铁粉

个人简介:418504286@qq.com

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2016-04-30
博客简介:

Yemiekai的博客

查看详细资料
个人成就
  • 获得422次点赞
  • 内容获得79次评论
  • 获得1,540次收藏
  • 代码片获得499次分享
创作历程
  • 2篇
    2023年
  • 4篇
    2022年
  • 18篇
    2021年
  • 15篇
    2020年
成就勋章
TA的专栏
  • 概念
    11篇
  • 卡尔曼滤波
    3篇
  • Neon
    7篇
  • 跟踪
    1篇
  • 论文
    4篇
  • 计算机基础
    2篇
  • 环境配置
    4篇
  • linux相关
    3篇
  • 概率论与数理统计
    3篇
  • trick
    4篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

图像对齐(ECC,Enhanced Correlation Coefficient)

该方法收录在OpenCV中:cv2.findTransformECC论文名为:《Parametric Image Alignment Using Enhanced Correlation Coefficient Maximization》(2008年)教程在此:https://github.com/spmallick/learnopencv/tree/master/ImageAlignment更多教程在此:https://github.com/spmallick/learnopencv2 问题定义
翻译
发布博客 2023.07.18 ·
1445 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

华为诺亚 VanillaNet

作者说,在卷积网络中加入人为设计的模块,达到了更好的效果,复杂度也增加了。公式写得很复杂,根据代码的理解,简单来说就是设计了一组卷积核,参数是可学习的,对激活后的数据做一次卷积,再加上BN。)来实现这一点,从而产生了一系列精简的网络,这些网络解决了固有的复杂性问题,非常适合资源有限的环境。,这是一种新颖的神经网络架构,强调设计的优雅和简单,同时在计算机视觉任务中保持卓越的性能。这些复杂的操作需要复杂的工程实现,包括重写 CUDA 的代码。这么弄了之后,为了增强网络的非线性的能力,又提出了一种有效的,
原创
发布博客 2023.06.06 ·
1026 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

共轭梯度法(Conjugate Gradients)(1)

最近在看ATOM,作者在线训练了一个分类器,用的方法是高斯牛顿法和共轭梯度法。看不懂,于是恶补了一波。学习这些东西并不难,只是难找到学习资料。简单地搜索了一下,许多文章都是一堆公式,这谁看得懂啊。后来找到一篇《An Introduction to the Conjugate Gradient Method Without the Agonizing Pain》,解惑了。为什么中文没有这么良心的资料呢?英文看着费劲,于是翻译过来搬到自己的博客,以便回顾。由于原文比较长,一共 666666 页的PDF,所
原创
发布博客 2022.04.10 ·
16360 阅读 ·
84 点赞 ·
16 评论 ·
288 收藏

牛顿法,高斯-牛顿法

牛顿法(Newton’s method)假如已知函数 f(x)f(x)f(x),想要求 f(x)=0f(x)=0f(x)=0 的解(或者叫根)。牛顿法(Newton’s method)大致的思想是:(1)选一个初始位置 x0x_0x0​(这个位置最好是在根的附近);(2)在这个位置上找一个 f(x)f(x)f(x) 的近似函数(通常用泰勒展开);(3)令近似函数为 000 ,求解;(4)以这个解为新的位置 x1x_1x1​;(5)重复上述迭代,到第 nnn 次迭代得到 xnx_nxn​,当 ∣
原创
发布博客 2022.04.05 ·
9747 阅读 ·
27 点赞 ·
3 评论 ·
112 收藏

各种梯度下降

Gradient descent (梯度下降)
原创
发布博客 2022.03.06 ·
1072 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

一些单目标跟踪数据集

1. GOT-10k《GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild》Generic Object Tracking Benchmark,提供了一个通用目标跟踪基准,发布于2018年。网站:GOT-10k: Generic Object Tracking Benchmark (http://got-10k.aitestunion.com/)完整数据大概有 666666 GB。部分数据
原创
发布博客 2022.01.20 ·
4817 阅读 ·
2 点赞 ·
0 评论 ·
23 收藏

Transformer 简记

Transformer 来自文章 《Attention Is All You Need》,2017 年发表于 NeurIPS(Neural Information Processing Systems)。文章共有 8 位作者,分别来自 Google Brain 和 Google Research,它们对文章具有同等贡献。论文发表时,其中两名作者现在不在谷歌,但是相关成果是在谷歌实习期间完成的。虽然文章名字叫做 “Attention Is All You Need”,然而实际上你需要的不仅仅是 Atten
原创
发布博客 2021.12.29 ·
691 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

MOSSE跟踪器python代码

发布资源 2021.09.07 ·
py

Focal Loss 笔记

Focal loss
原创
发布博客 2021.08.31 ·
345 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

主成分分析(Principal Component Analysis,PCA)

降维(Dimensionality Reduction)问题1. 压缩数据降维可以压缩数据,使数据占用更少的计算机内存和硬盘空间,或者是给算法提速。举一个例子,假如你有一组数据,用 2 个特征来描述它:这 2 个特征都表示长度,存在冗余,完全可以只用其中一个。而且从数据分布来看,似乎都在一条直线上。或者我们再创建一个向量来描述它,这里用向量 z\boldsymbol{z}z:通过某种关系把特征 x1x_1x1​ 和特征 x2x_2x2​ 融合成一个新的特征 zzz,把 zzz 单独拿出来:
原创
发布博客 2021.08.15 ·
483 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

K-Means 算法

聚类(Clustering)问题在 无监督学习(Unsupervised Learning) 中,我们的数据没有附带任何标签。假如我们有一系列数据,它是二维的。这一系列数据只有特征 x=[x1,  x2]\boldsymbol{x}=[x_1,\; x_2]x=[x1​,x2​],却没有标签 yyy。如下图所示:我们要把这组数据输入到一个算法中,找到一种结构,把图中的数据分成几簇(cluster)。聚类算法可以帮你做这件事情。K-MeansK-Means 算法是一种最常用的聚类算法。给算
原创
发布博客 2021.08.13 ·
487 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

支持向量机(Support Vector Machine,SVM)简单介绍

1. SVM 的优化目标前面讲了逻辑回归,SVM 和逻辑回归是很像的,我们试着从逻辑回归过渡到 SVM。 (图1) 如 (图1) 所示,在逻辑回归中,输入样本特征为 x\boldsymbol{x}x,模型参数为 θ\bm{\theta}θ。当样本标签为 y=1y=1y=1 时,我们希望假设函数输出 hθ(x)≈1h_{\bm{\theta}}(\boldsymbol{x})\approx1hθ​(x)≈1,也就是说希望 θTx\bm{\theta}^T\boldsymbol{x}θTx 远大
原创
发布博客 2021.08.10 ·
872 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

正则化(Regularization),权重衰减(Weight decay)

L2 正则化是怎么减轻过拟合的,权重衰减 (weight decay) 是什么意思。
原创
发布博客 2021.08.01 ·
713 阅读 ·
4 点赞 ·
1 评论 ·
3 收藏

线性回归(Linear Regression)和逻辑回归(Logistic Regression)

1 线性回归(Linear Regression)1.1 建立问题举个例子,你有这样一组数据:波特兰市的城市住房价格的数据,不同尺寸的房子对应不同的售价。现在你有个朋友想要卖房子,他的房子是1250平方英尺,大概能卖多少钱?我们可以根据这组数据,建立一个模型,然后用这组数据集去拟合模型。拟合完毕后,输入1250,它就会告诉你朋友能卖多少钱。看起来这组数据似乎分布在一条直线附近:好,只要找到这条直线的方程,你就能根据面积来预测房价了。(在这个例子里,直线方程就是我们要拟合的模型)如何找到直线
原创
发布博客 2021.07.25 ·
10483 阅读 ·
23 点赞 ·
7 评论 ·
124 收藏

用余弦距离表示向量之间的相似度

很多深度学习的应用里用余弦距离来表示特征向量之间的相似度。这怎么弄呢?首先人为制造一个定义:两个向量的夹角越小,则两个向量越相似。夹角可以通过 cosin\text{cosin}cosin 函数来算:cos⁡(θ)=a⃗⋅b⃗∣a⃗∣∣b⃗∣\cos(\theta) =\frac{ \vec{a} \cdot \vec{b} } {|\vec{a}| |\vec{b}|}cos(θ)=∣a∣∣b∣a⋅b​先对 a⃗\vec{a}a 和 b⃗\vec{b}b 归一化之后再算也是一样的。设 a⃗
原创
发布博客 2021.07.10 ·
725 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

加权框融合 WBF(Weighted Boxes Fusion: combining boxes for object detection models)

文章PDF地址:https://arxiv.org/abs/1910.13302GitHub地址:https://github.com/ZFTurbo/Weighted-Boxes-Fusion简介作者认为,在目标检测任务中,当实时性要求不强时,集成多个推理模型有助于我们得到更好的结果。于是作者在文中提出了一种方法,可以把多个目标检测模型的预测结果结合起来。这个方法称为 weighted boxes fusion,简称 WBF 。在筛选预测框的过程中,常用的方法是非极大值抑制(non-maxi
原创
发布博客 2021.06.12 ·
9900 阅读 ·
52 点赞 ·
26 评论 ·
178 收藏

古典概型,条件概率,贝叶斯公式

定义,性质定义 设 EEE 是随机试验,SSS 是它的样本空间。   对于 EEE 的每一个事件 AAA 赋予一个实数,记为 P(A)P(A)P(A),称为事件 AAA 的概率。   如果集合函数 P( ⋅ )P(\, \boldsymbol{\cdot} \,)P(⋅) 满足下列条件:   1∘1^{\circ}1∘ 非负性: 对于每一事件 AAA,有 P(A)⩾0P(A) \geqslant 0P(A)⩾0;   2∘2^{\circ}2∘ 规范性: 对于必然事件 SSS,有 P(S)=1P(
原创
发布博客 2021.05.30 ·
2336 阅读 ·
2 点赞 ·
1 评论 ·
3 收藏

高斯混合模型(Gaussian Mixture Model,GMM)和期望最大化(Expectation Maximization,EM)算法

本文是关于 coursera 上 《Robotics: Estimation and Learning》 课程的笔记。前面讲了一维和多维高斯分布的相关知识。但是在某些情况下,使用 单高斯模型(Gaussian single model, GSM) 会有一些局限。在现实世界中我们需要学习的目标可能符合这样的分布 :如上图所示,当你用单高斯模型去拟合它时,得到这样的曲线。显然它不能很好地表征目标。这样的目标有多种模式,或者缺乏对称性。你将看到混合高斯模型的表现力则很好,好到可以建模任意的.
原创
发布博客 2021.05.23 ·
1444 阅读 ·
2 点赞 ·
0 评论 ·
12 收藏

高斯分布的极大似然估计

一维高斯分布一维高斯分布(Gaussian Distribution)的概率密度函数如下:p(x)=12πσexp⁡{−(x−μ)22σ2}p(x)=\frac{1}{\sqrt{2\pi} \sigma} \exp \left\{ - \frac{(x-\mu)^2}{2\sigma^2} \right\}p(x)=2π​σ1​exp{−2σ2(x−μ)2​}高斯分布非常有用,而且非常重要:∙\bullet∙ 描述高斯分布只需要 2 个参数,均值 μ\muμ 和 方差 σ2\sigma^2σ2,
原创
发布博客 2021.05.15 ·
9932 阅读 ·
33 点赞 ·
1 评论 ·
98 收藏

极大似然估计的意思

极大似然估计(Maximum Likelihood Estimate,MLE)这个名字就很奇怪,又拗口,第一次接触时一直不懂到底什么意思。先不讲它的原理,直接先举个例子看看:假设有个篮子,里面装了2种球:红球和白球。问:随便抽一个球,抽到红球的概率是多少?怎么办?现在假设抽到红球的概率是 ppp,则抽到白球的概率是 1−p1-p1−p。ppp 就是我们要的答案。为了得到 ppp 的值,有一个机灵的小伙子做了一个实验:他抽了10次球,每次抽完都放回去。结果是10次里面有7次是红球,有3次是
原创
发布博客 2021.05.05 ·
1088 阅读 ·
4 点赞 ·
2 评论 ·
7 收藏
加载更多