Hypothesis Representation (假设函数表达式)
Logistic Regression Model
Want
0≤hθ(x)≤1
Sigmoid function
Logistic function
This two concept are basically synonyms and mean the same things.
这两个函数概念基本是同义词,表示了
g(z)
Interpretation of Hypothesis Output
对于一个已存在的数据集,我们需要为假设函数寻找一个
θ
来拟合这个数据集;
hθ(x)=P(y=1|x;θ)
在给定的特征值
x
,参数值
P(y=0|x;θ)=1−P(y=1|x;θ)
Decision Regression(决策边界)
- Logistic Regression
假设预测:
如果
hθ(x)≥0.5
,则
y=1
;
如果
hθ(x)<0.5
,则
y=0
;
在
g(z)
函数中
如果
z≥0
,则
0.5≤g(z)<1
;
如果
z<0
,则
0<g(z)<0.5
;
所以
θTx≥0⇒hθ(x)≥0.5⇒y=1
θTx<0⇒hθ(x)<0.5⇒y=0
- Decision Boundary
hθ(x)=g(θ0+θ1x1+θ2x2)
假设:
θ0=−3,θ1=1,θ2=1
Predict
"y=1"
if
−3+x1+x2≥0
"y=0"
if
−3+x1+x2<0
这里可以看出
x1+x2=3
这条线 是上述两个等式取不同值得分界线,这条分界线就被称为决策边界;
在这里,决策边界是假设函数的一个属性,由参数决定,与数据集无关。
- Non-linear decision Boundaries
hθ(x)=g(θ0+θ1x1+θ2x2+θ3x21+θ4x22)
support:
Predict
"y=1"
if
−1+x21+x22≥0
"y=0"
if
−1+x21+x22<0
此时,决策边界为 x21+x22=1
参数 θ 并不是由训练集所决定的,但是可以由训练集拟合出 θ
高阶复杂的假设函数:
hθ(x)=g(θ0+θ1x1+θ2x2+θ3x21+θ4x21x2+θ5x21x22+...)
本文介绍了逻辑回归模型及其假设函数表达式,通过sigmoid函数确保输出概率范围在0到1之间。详细解释了如何通过调整参数θ来确定决策边界,实现二分类任务。
1452

被折叠的 条评论
为什么被折叠?



