烟雨博客

95
原创
0
转载
0
译文
22
评论
142373
访问

我的博客文章

2017
01

Ubuntu16.04-64bit+TensorFlow1.2 安裝

TensorFlow是Google的一个开源机器学习框架,官网:https://www.tensorflow.org/ 里面有详细的教程和API说明,我在虚拟机上装的TensorFlow所以不支持CUDA版本的TensorFlow安装。TensorFlow安装方式TensorFlow官网介绍了四种安装方式 virtualenv 常见的pip安装 Docker Anaconda 官方建议采用virt

(280)(0)
2017
04

opencv提高之人脸检测

上一篇介绍了cascade分类器的训练,这里给出训练好的xml文件进行人脸检测的代码(由于眼睛发炎不能长时间看电脑屏幕,以后补详细介绍)#include <iostream> #include <opencv2\core\core.hpp> #include <opencv2\highgui\highgui.hpp> #include <opencv2\imgproc\imgproc.hpp> #i

(217)(0)
2017
22

opencv提高之cascade分类器训练人脸检测模型

1.概述在opencv中有两个类型的分类器:opencv_haartraining和opencv_traincascade,后者是2.x版本中基于C++写的新版本的分类器。二者最主要的区别是opencv_traincascade支持Haar和LBP。LBP在训练和检测方面要比Haar特征快数倍。Haar和LBP的检测质量取决于要训练的数据和训练的参数设置。 opencv_traincascade与

(751)(0)
2017
19

opencv之SURF图像匹配

1.概述前面介绍模板匹配的时候已经提到模板匹配时一种基于灰度的匹配方法,而基于特征的匹配方法有FAST、SIFT、SURF等,上面两篇文章已经介绍过使用Surf算法进行特征点检测以及使用暴力匹配(BruteForceMatcher)和最近邻匹配(FLANN)两种匹配方法。接下来将更深一步介绍利用Surf检测到的特征点以及匹配对进行图像匹配. 利用Surf算法进行图像匹配其一般流程为:检测物体特征点

(1752)(0)
2017
18

opencv之SURF特征点提取及匹配

1.概述在基于特征匹配的方法中,Surf算法对物体的旋转、光照等情况有较好的鲁棒性,且教SIFT算法而言计算速度更快。通过Surf算法检测到的特征点其描述符包含了这个点的位置和尺度信息,故对两幅图片进行匹配时可以通过两幅图中特征点匹配对进行匹配。即使物体位置和光照的改变也能够有良好的匹配效果。 在本片文章中将使用SurfDescriptorExtractor及其函数compute来完成特定计算,使

(238)(0)
2017
18

opencv之SURF算法原理及关键点检测

1.概述在基础篇里面讲模板匹配的时候已经介绍过,图像匹配主要有基于灰度和基于特征两种方法。基于特征匹配的方法有很多种如:FAST、HARRIS、SIFT、SURF、SUSAN等。其中SIFT算法由D.G.Lowe于1999年提出,2004年完善总结。SIFT是一种鲁棒性好的尺度不变特征描述方法,但SIFT算法计算数据量大、时间复杂度高、算法耗时长。针对上述缺点许多研究者对SIFT算法做了不同的改进,

(540)(0)
2017
17

opencv学习(四十四)之图像角点检测Harris

1.概述角点是图像很重要的特征,对图像图形的理解和分析有很重要的作用,在保留图像图形重要特征的同时,可以有效减少信息的数据量,使信息的含量很高,有效提高计算速度,有利于图像的可靠匹配,使得实时处理成为可能。在物体识别、图像匹配、视觉跟踪和三维重建等方面有很重要的应用。 角点可以认为是窗口向任意方向的移动都导致图像灰度的明显变化。从图像分析的角度来定义角点可以有一下两种: 1.角点可以是两个边缘的

(257)(0)
2017
16

opencv学习(四十三)之图像的矩moments()

1.概述图像识别的一个核心问题是图像的特征提取,简单描述即为用一组简单的数据(数据描述量)来描述整个图像,这组数据月简单越有代表性越好。良好的特征不受光线、噪点、几何形变的干扰,图像识别技术的发展中,不断有新的描述图像特征提出,而图像不变矩就是其中一个。从图像中计算出来的矩通常描述了图像不同种类的几何特征如:大小、灰度、方向、形状等,图像矩广泛应用于模式识别、目标分类、目标识别与防伪估计、图像编码与

(1082)(0)
2017
16

opencv学习(四十二)之多边形包围图像轮廓

首先介绍一个逼近多边形的函数approxPolyDP(),其定义如下:void cv::approxPolyDP ( InputArray curve, OutputArray approxCurve, double epsilon,

(1851)(0)
2017
16

opencv学习(四十一)之寻找凸包convexHull()

1.概述凸包(Convex Hull)是一个计算几何(图形学)中的概念,在一个实数向量空间V中,对于给定集合X,所有包含X的凸集的交集S被称为X的凸包。 X的凸包可以用X内所有点(x1, x2….xn)的线性组合来构造。在二维欧几里得空间中,凸包可以想象为一条刚好包着所有点的橡皮圈,用不严谨的话来讲,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边形,它能包含点集中所有的点。常见的有

(557)(0)
2017
15

opencv学习(四十)之寻找图像轮廓findContours()

1.概述在这篇文章中介绍如何使用findContours()函数寻找图像中物体的轮廓,在OpenCV中没有给出findCountours()函数的原理,如果想了解查找轮廓原理,可以翻**墙出去Google”Topological structural analysis of digitized binary images by border following”,这里就不一一翻译了.2.APIope

(446)(0)
2017
13

opencv学习(三十九)之反向投影calcBackProject()

1.概述反向投影是一种记录给定图像中的像素点如何适应直方图模型像素分布的方式,简单来讲,反向投影就是首先计算某一特征的直方图模型,然后使用模型去寻找图像中存在的特征。反向投影在某一位置的值就是原图对应位置像素值在原图像中的总数目。2.反向投影原理原理采用OpenCV docs介绍!使用肤色直方图来解释反向投影的工作原理。假设我们已经获得一个肤色直方图(Hue-Staturation),旁边的直方图就

(1895)(0)
2017
11

opencv学习(三十八)之图像模板匹配matchTemplate()

1.概述利用计算机视觉技术对图像进行处理,通常会用到图像的匹配,图像匹配是指图像之间的比较,得到不同图像之间的相似度,在机器识别的过程中把不同传感器或同一传感器在不同时间、不同成像条件下对同一景物获得的两幅或多幅图像在空间上对准,或根据已知模式到另一幅图中寻找对应的模式。匹配方法大体分为基于灰度和基于特征两类,其中基于特征的配准方法研究较多。 基于灰度的模板匹配方法原理简单且在光照良好的条件下可以

(611)(0)
2017
09

Python中基本数据存储结构列表、元组和字典

在Python的学习中我们看到Python有列表、元组和字典三种基本的数据存储结构,下面对着三种结构做一个总结1. 列表(list)列表在Python中是一个任意类型对象位置的相关有序集合,它没有固定大小,根据数据量的不同可以动态变化。可以对列表中的数据进行赋值、修改、添加、删除等操作。与C\C++中一维数组类似,其索引index是从0开始的而不是从1开始的。可以对列表进行索引、切片、分割等操作。

(564)(0)
2017
08

Linux-Ubuntu16.04重新编译vim8.0支持Lua,Python3和YouCompleteMe

1.首先安装 依赖项如下:sudo apt-get install libncurses5-dev libgnome2-dev libgnomeui-dev \ libgtk2.0-dev libatk1.0-dev libbonoboui2-dev \ libcairo2-dev libx11-dev libxpm-dev libxt-dev python-dev \ py

(808)(0)
95条 共7页1 2 3 4 5 ... 下一页 尾页
img

keith_bb

等级:

排名:第16048名

博客专栏
文章分类
文章存档
阅读排行
评论排行
推荐文章
最新评论
img