图像处理在仪表自动化中的应用

原创 2016年06月02日 10:49:09

1.项目描述

利用摄像头采集仪表盘的信息,对采集到的图片信息进行识别,

2.实现的过程

2.1 模板匹配法

提取0-9 十个数字的模板,进行归一化,模板大小为高50*宽30像素。对摄像头拍到的图像信息,先进性灰度化处理,高斯平滑,二值化处理,再进行形态学处理之后,通过找寻图像中的连通区域,可以找到若干个连通区域,当然有很多不包含数字的连通区域,可以根据找到的连通区域的大小进行过滤,而且可以进一步根据连通区域的先验知识,如长宽之比来过滤,增加准确性。这样找到的连通区域的并不是按照从左到右的顺序,找到之后,可以根据x的坐标进行排序,在识别的过程中就是按照正常的读数的顺序。在识别的过程中采用的是模板匹配的方法,对测试样本,分割之后,进行归一化处理,与模板图像做异或运算,统计出现的1的次数,次数最多的模板就是测试图像的类别。刚开始基于一块电表的图像做实验,准确率为60%,分析错误的原因,数字和5和数字6,数字6,数字8,和数字0,这两组数字容易被识别错,但是模板匹配的主要优点是速度快。后来分析数字5和数字6之间的区别,用漫水填充算法对测试图像进行处理,然后与原测试图像做差值运算,如果是5的话,差值运算的结果应该是0,如果是6,差值运算有响应的数值。可以将5和6分开。0,6,8这三个数字的区别可以采用相同的思路,但有点区别,6的上半部分没有孔洞,可以先进性漫水填充算法,如果上半部分没有变化,则是6,剩下再区分0和8,直接统计中间部分区域的像素个数,可以将0和8区分开。经过二次处理之后,识别率将近100%。

2.2 SVM分类

模板匹配的速度虽然快,但是通用性不强,事先需要提取模板。而采用SVM机器学习的方法,可以避免这种问题,SVM对小数据集的分类效果比较理想,opencv里面有现成的svm函数可以调用,进行简单的配置就可以使用了,很方便。直接用模板匹配提取的模板,每个数字一个样本,共十个训练样本,特征向量直接采用二值图像的像素分布,准确率可以达到70%以上,增加训练的数量,识别率上升明显。
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

robomaster自动化打大神符(2017年版本)本文包括图像处理和树莓派与机器交互部分

不好意思,本文为本人原创作品,不允许各种形式的转载,否则依法追究法律责任,没办法就是这麽任性...
  • GengLSh
  • GengLSh
  • 2017年05月09日 17:14
  • 830

卷积神经网络及其在图像处理中的应用

一,前言卷积神经网络(Constitutional Neural Networks, CNN)是在多层神经网络的基础上发展起来的针对图像分类和识别而特别设计的一种深度学习方法。先回顾一下多层神经网络:...
  • taigw
  • taigw
  • 2016年01月18日 00:19
  • 29755

数字图像处理及应用(MATLAB)第4章

  • 2015年05月22日 20:47
  • 2.37MB
  • 下载

对数图像处理新模型及其应用研究

  • 2015年11月18日 20:02
  • 2.45MB
  • 下载

【opencv+python】图像处理之二、几何变换(仿射与投影)的应用

该系列文章为 OpenCV+Python Tutorials的学习笔记 代码托管在Github 转载请注明: http://blog.csdn.net/a352611/article/detail...
  • a352611
  • a352611
  • 2016年05月15日 20:34
  • 6003

插值算法在数字图像处理中的应用

  • 2013年07月21日 16:42
  • 7.68MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:图像处理在仪表自动化中的应用
举报原因:
原因补充:

(最多只允许输入30个字)