Codeforces 484D Kindergarten(dp)

题目链接:Codeforces 484D Kindergarten

题目大意:给定一个序列,可以分为若干段,每份的值即为该段中的最大值减掉最小值。问说所有段的总和最大为多少。

解题思路:dp[i][j],表示第i个位置,j为0时为升序状态,j为1是为降序状态。根据a[i]和a[i-1]的大小可以确定升降序的转

移。比如1 5 5 7,在第2个5的位置,即使出现了相等的情况,也会是分段的情况会更优;1 5 6 7 只有连续升序的状态

才需要考虑说是否成段。

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>

using namespace std;
typedef long long ll;
const int maxn = 1e6+5;

int N, a[maxn];
ll dp[maxn][2];

int main () {
    scanf("%d%d", &N, &a[1]);

    for (int i = 2; i <= N; i++) {
        scanf("%d", &a[i]);
        if (a[i] > a[i-1]) {
            dp[i][0] = max(dp[i-1][1], dp[i-1][0] + a[i] - a[i-1]);
            dp[i][1] = max(dp[i-1][1], dp[i-1][0]);
        } else {
            dp[i][1] = max(dp[i-1][0], dp[i-1][1] + a[i-1] - a[i]);
            dp[i][0] = max(dp[i-1][0], dp[i-1][1]);
        }
    }
    printf("%lld\n", max(dp[N][0], dp[N][1]));
    return 0;
}
区间DP是一种动态规划的方法,用于解决区间范围内的问题。在Codeforces竞赛中,区间DP经常被用于解决一些复杂的字符串或序列相关的问题。 在区间DP中,dp[i][j]表示第一个序列前i个元素和第二个序列前j个元素的最优解。具体的转移方程会根据具体的问题而变化,但是通常会涉及到比较两个序列的元素是否相等,然后根据不同的情况进行状态转移。 对于区间长度为1的情况,可以先进行初始化,然后再通过枚举区间长度和区间左端点,计算出dp[i][j]的值。 以下是一个示例代码,展示了如何使用区间DP来解决一个字符串匹配的问题: #include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> using namespace std; const int maxn=510; const int inf=0x3f3f3f3f; int n,dp[maxn][maxn]; char s[maxn]; int main() { scanf("%d", &n); scanf("%s", s + 1); for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int i = 1; i <= n; i++) { if(s[i] == s[i - 1]) dp[i][i - 1] = 1; else dp[i][i - 1] = 2; } for(int len = 3; len <= n; len++) { int r; for(int l = 1; l + len - 1 <= n; l++) { r = l + len - 1; dp[l][r] = inf; if(s[l] == s[r]) dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]); else { for(int k = l; k <= r; k++) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } } printf("%d\n", dp[n]); return 0; } 希望这个例子能帮助你理解区间DP的基本思想和应用方法。如果你还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值