1.算法简介
朴素贝叶斯(Naive Bayes)是监督学习的一种常用算法,易于实现,没有迭代,并有坚实的数学理论(即贝叶斯定理)作为支撑。
本文以拼写检查作为例子,讲解Naive Bayes分类器是如何实现的。对于用户输入的一个单词(words),拼写检查试图推断出最有可能的那个正确单词(correct)。当然,输入的单词有可能本身就是正确的。比如,输入的单词thew,用户有可能是想输入the,也有可能是想输入thaw。为了解决这个问题,Naive Bayes分类器采用了后验概率P(c|w)来解决这个问题。P(c|w)表示在发生了w的情况下推断出c的概率。为了找出最有可能c,应找出有最大值的P(c|w),即求解问题
argmaxc P(c|w)
<
朴素贝叶斯是一种基于贝叶斯定理的监督学习算法,常用于拼写检查。通过计算后验概率P(c|w)确定最可能的正确单词。文章介绍了使用编辑距离来简化计算,以及处理不同情况的策略,如删除、交换、更改、插入操作。
订阅专栏 解锁全文
2503

被折叠的 条评论
为什么被折叠?



