【数据挖掘】分类之Naïve Bayes

朴素贝叶斯是一种基于贝叶斯定理的监督学习算法,常用于拼写检查。通过计算后验概率P(c|w)确定最可能的正确单词。文章介绍了使用编辑距离来简化计算,以及处理不同情况的策略,如删除、交换、更改、插入操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.算法简介


朴素贝叶斯(Naive Bayes)是监督学习的一种常用算法,易于实现,没有迭代,并有坚实的数学理论(即贝叶斯定理)作为支撑。


本文以拼写检查作为例子,讲解Naive Bayes分类器是如何实现的。对于用户输入的一个单词(words),拼写检查试图推断出最有可能的那个正确单词(correct)。当然,输入的单词有可能本身就是正确的。比如,输入的单词thew,用户有可能是想输入the,也有可能是想输入thaw。为了解决这个问题,Naive Bayes分类器采用了后验概率P(c|w)来解决这个问题。P(c|w)表示在发生了w的情况下推断出c的概率。为了找出最有可能c,应找出有最大值的P(c|w),即求解问题

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浅唱书令

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值