稀疏表示与压缩感知学习资料整理

转载 2012年03月28日 12:45:47

转自http://blog.csdn.net/alec1987/archive/2011/05/10/6408604.aspx

 

 

Sparse, L1-minimization, Compressive Sensing

 

Sparse大家并不陌生,是个经典话题了。而此时sparse已经卷土重来,虽然还是那一锅汤,但是药已经换了。
以L1-minimization为核心的算法,近几年飞速进展,Compressive Sensing (Compressive Sampling) 已然成为数学领域和信号处理最前沿最热门的方向。

http://www-stat.stanford.edu/~donoho/Reports/2004/CompressedSensing091604.pdf


最近一年多这种新形式的算法快速蔓延到模式识别界应用,论文质量高、算法效果好、而且算法一般都非常简单。
而这仅仅是个开始,所以我一直有这个想法专开一贴,供大家一起讨论、共同进步,今天付诸与行动,希望大家支持。
在这个地方(第一个帖),我会陆续更新提供一些这方面的材料,供大家了解。如果大家提供了有趣的材料,我也尽量加进来。当然,此贴重点还是放在理论应用和模式识别上。


Compressive Sensing资源主页:


Compressive Sensing Resources (最权威最全面的Compressive Sensing资源主页,几乎什么都能找的到);

http://www.dsp.ece.rice.edu/cs/

 

Compressive Sensing (和上面的差不多);

http://www.computing.edu.au/~dsp/cs/index.php

 

Compressive Sensing Listing;

http://igorcarron.googlepages.com/cslisting

 

马毅的课程主页

http://decision.csl.uiuc.edu/~yima/ECE598-08.html

 

Compressive Sensing Videos;

http://igorcarron.googlepages.com/csvideos

 

Compressed Sensing Codes

http://igorcarron.googlepages.com/cscodes

 

(还有Compressive Sensing Resources 的Software一栏中);

http://www.dsp.ece.rice.edu/cs/

 

Nuit Blanche;

http://nuit-blanche.blogspot.com/search/label/compressed%20sensing

 

Compressive Sensing: The Big Picture;

http://igorcarron.googlepages.com/cs

 

Terence Tao's What's new;

http://www.math.ucla.edu/~tao/

http://terrytao.wordpress.com/

 

理论方面的代表人物:
David Donoho;

http://www-stat.stanford.edu/~donoho/

 

Emmanuel Candes;

http://www.acm.caltech.edu/~emmanuel/


Tutorials
Emmanuel Candès, Compressive sampling. (Int. Congress of Mathematics, 3, pp. 1433-1452, Madrid, Spain, 2006)

http://www.acm.caltech.edu/~emmanuel/papers/CompressiveSampling.pdf

 

Richard Baraniuk, Compressive sensing. (IEEE Signal Processing Magazine, 24(4), pp. 118-121, July 2007)

http://www.dsp.ece.rice.edu/cs/baraniukCSlecture07.pdf

 

Emmanuel Candès and Michael Wakin, An introduction to compressive sampling. (IEEE Signal Processing Magazine, 25(2), pp. 21 - 30, March 2008)

http://www.dsp.ece.rice.edu/cs/CSintro.pdf

 

Justin Romberg, Imaging via compressive sampling. (IEEE Signal Processing Magazine, 25(2), pp. 14 - 20, March 2008)

Conferences and Symposiums

http://www.dsp.ece.rice.edu/cs/Imaging-via-CS.pdf


Short Course: Sparse Representations and High Dimensional Geometry, May 30 - June 1, 2007

http://www.ams.org/meetings/vonneumann07.html

 

New Directions Short Course: Compressive Sampling and Frontiers in Signal Processing, June 4 - 15, 2007 (介绍性的资料和视频)

http://www.ima.umn.edu/2006-2007/ND6.4-15.07/


理论方面的代表文献:


Donoho 和 Candes 的文章几乎都是经典


模式识别领域的应用(包括机器视觉):
大家可以去Compressive Sensing Resources 看 Statistical Signal Processing, Machine Learning, Bayesian Methods, Applications of Compressive Sensing 等栏目

http://www.dsp.ece.rice.edu/cs/

 

马毅的一系列论文

http://decision.csl.uiuc.edu/~yima/Publication.html


John Wright, Allen Yang, Arvind Ganesh, Shankar Shastry, and Yi Ma, Robust face recognition via sparse representation. (To appear in IEEE Trans. on Pattern Analysis and Machine Intelligence) , 2008

http://perception.csl.uiuc.edu/recognition/Files/PAMI-Face.pdf


Allen Yang, John Wright, Yi Ma, and Shankar Sastry, Feature selection in face recognition: A sparse representation perspective. (Preprint, 2007)

http://perception.csl.uiuc.edu/recognition/Files/PAMI_Feature.pdf

 

Kwak, N., Principal Component Analysis Based on L1-Norm Maximization, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008.

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4522554&isnumber=4567786

 

Bhusnurmath, Arvind; Taylor, Camillo J., Graph Cuts via $ell_1$ Norm Minimization, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008.

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4483514&isnumber=4601506

 

Jianchao Yang, John Wright, Thomas Huang, and Yi Ma, Image Super-Resolution as Sparse Representation of Raw Image Patches, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2008.

http://perception.csl.uiuc.edu/recognition/Files/CVPR2008_superres.pdf

 

Arvind Ganesh, Zihan Zhou, and Yi Ma, Separation of A Subspace-Sparse Signal: Algorithms and Conditions, ICASSP 2009.

 

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/alec1987/archive/2011/05/10/6408604.aspx

最小均方算法(LMS Algorithm)理论及DSP实现

最小均方算法(LMS Algorithm)理论及DSP实现  LMS算法可认为是机器学习里面最基本也比较有用的算法,神经网络中对参数的学习使用的就是LMS的思想,在通信信号处理领域LMS也非常常...

机器学习小组知识点3:最小二乘法(LSM)

上篇博客介绍了最小均方算法(LMS),其实里面的东西包含的很多,其中有最小二乘法,梯度下降以及随机梯度下降法。这篇博客着重介绍最小二乘法的推导,来源以及做一点儿推广。下面进入正题:最小二乘法的闭形式推...

深度学习资料整理(压缩感知)

近年来压缩感知迅速的发展,越来越多的人研究这一前沿领域,希望通过CS理论以低于香农采样定理的采样速率来采集信号,并能够完美的重建原始信号!...
  • LXJ0906
  • LXJ0906
  • 2015年04月22日 10:50
  • 674

深度学习资料整理(压缩感知)

压缩感知技术   压缩感知(Compressive Sensing, orCompressed Sampling,简称CS),由Candes、TerresTao等人提出,挑战传统的Nyquist采样定...

压缩感知与稀疏表示

压缩感知,本为信号处理领域中对传统采样定理的改进,现已发展到与信号相关的各个领域,如合成孔径雷达成像、遥感成像、核磁共振成像、深空探测成像、无线传感器网络、信源编码、人脸识别、语音识别、探地雷达成像等...

从稀疏表示到压缩感知(上)

原文《白话压缩感知》 old / xiahouzuoxin Tags: DSP    压缩感知介绍 压缩感知(Compressive Sensing,CS),有时也叫成Co...

压缩感知和稀疏表示的经典文献

压缩传感不是万能的, 虽然它是信号和图像处理领域最热门的研究对象 但是它不可能解决所有问题 就像中科院李老师的话: “压缩感知根植于数学理论,它给目前国内浮躁的学术环境提了一个警钟!因为...

稀疏表示中压缩感知库Kl1p的配置方法

1 浅谈稀疏表示和压缩感知 写这篇博客是应为需要用稀疏表示做人脸识别(当时还没有做完,效果也还不清楚),要求用C++实现,理所应当想到应该借用opencv这个开源工具,可惜发现仅仅opencv还是不...

稀疏表示和压缩感知

稀疏性与L1范数转自http://blog.sina.com.cn/s/blog_49b5f5080100b62Sparse, L1-minimization, Compressive Sensing...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:稀疏表示与压缩感知学习资料整理
举报原因:
原因补充:

(最多只允许输入30个字)