CNN中感受野的计算

原创 2015年07月10日 15:38:08

感受野(receptive field)是怎样一个东西呢,从CNN可视化的角度来讲,就是输出featuremap某个节点的响应对应的输入图像的区域就是感受野。

比如我们第一层是一个3*3的卷积核,那么我们经过这个卷积核得到的featuremap中的每个节点都源自这个3*3的卷积核与原图像中3*3的区域做卷积,那么我们就称这个featuremap的节点感受野大小为3*3

如果再经过pooling层,假定卷积层的stride是1,pooling层大小2*2,stride是2,那么pooling层节点的感受野就是4*4


有几点需要注意的是,padding并不影响感受野,stride只影响下一层featuremap的感受野,size影响的是该层的感受野。

至于如何计算感受野,我的建议是top to down的方式。下面我拿一个例子来算算


pool3的一个输出对应pool3的输入大小为2*2

依次类推,对应conv4的输入为4*4,因为2*2的每个角加一个3*3的卷积核,就成了4*4,当然这是在stride=1的情况下才成立的,但是一般都是stride=1,不然也不合理

对应conv3的输入为6*6

对应pool2的输入为12*12

对应conv2的输入为14*14

对应pool1的输入为28*28

对应conv1的输入为30*30

所以pool3的感受野大小就是30*30


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

深度学习——感受野

感受野
  • gzq0723
  • gzq0723
  • 2016年11月12日 10:17
  • 4451

深度学习中的感受野计算

参考链接:http://blog.csdn.net/gzq0723/article/details/53138430   http://blog.csdn.net/kuaitoukid/articl...

CNN 感受野计算

转自 http://blog.csdn.net/kuaitoukid/article/details/46829355 感受野(receptive field)是怎样一个东西呢,从CNN可视化的...

基于局部感受野的极速学习机

本文是"Local Receptive Fields Based Extreme Learning Machine"的学习笔记。含实验结果,及自己实现的源代码!...

卷积神经网络物体检测之感受野大小计算

学习RCNN系列论文时, 出现了感受野(receptive field)的名词, 感受野的尺寸大小是如何计算的,在网上没有搜到特别详细的介绍, 为了加深印象,记录下自己对这一感念的理解,希望对理解基于...

人类视觉-感受野

在视觉通路上,视网膜上的光感受器(杆体细胞和锥体细胞)通过接受光并将它转换为输出神经信号而来影响许多神经节细胞、外膝状体细胞以及视觉皮层中的神经细胞.反过来,任何一种神经细胞(除起支持和营养作用的神经...

卷积网络之感受野

在卷积神经网络中,感受野的定义是 卷积神经网络每一层输出的特征图(feature map)上的像素点在原始图像上映射的区域大小。感受野大小可通过卷积层逐层递推往前迭代计算获得。...
  • xsd1221
  • xsd1221
  • 2016年12月15日 17:48
  • 817

深度学习与计算机视觉系列(10)_细说卷积神经网络

前面九讲对神经网络的结构,组件,训练方法,原理等做了介绍。现在我们回到本系列的核心:计算机视觉,神经网络中的一种特殊版本在计算机视觉中使用最为广泛,这就是大家都知道的卷积神经网络。卷积神经网络和普通的...

CNN基本问题

基本理解CNN降低训练参数的2大法宝局部感受野、权值共享 局部感受野:就是输出图像某个节点(像素点)的响应所对应的最初的输入图像的区域就是感受野。 权值共享:比如步长为1,如果每移动一个像素就有一...

卷积层感受野和坐标映射

转载自http://blog.cvmarcher.com/posts/2015/05/17/cnn-trick/ 如有版权问题,请联系博主删除本博客 Receptive Field (感受...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:CNN中感受野的计算
举报原因:
原因补充:

(最多只允许输入30个字)