CNN中感受野的计算

原创 2015年07月10日 15:38:08

感受野(receptive field)是怎样一个东西呢,从CNN可视化的角度来讲,就是输出featuremap某个节点的响应对应的输入图像的区域就是感受野。

比如我们第一层是一个3*3的卷积核,那么我们经过这个卷积核得到的featuremap中的每个节点都源自这个3*3的卷积核与原图像中3*3的区域做卷积,那么我们就称这个featuremap的节点感受野大小为3*3

如果再经过pooling层,假定卷积层的stride是1,pooling层大小2*2,stride是2,那么pooling层节点的感受野就是4*4


有几点需要注意的是,padding并不影响感受野,stride只影响下一层featuremap的感受野,size影响的是该层的感受野。

至于如何计算感受野,我的建议是top to down的方式。下面我拿一个例子来算算


pool3的一个输出对应pool3的输入大小为2*2

依次类推,对应conv4的输入为4*4,因为2*2的每个角加一个3*3的卷积核,就成了4*4,当然这是在stride=1的情况下才成立的,但是一般都是stride=1,不然也不合理

对应conv3的输入为6*6

对应pool2的输入为12*12

对应conv2的输入为14*14

对应pool1的输入为28*28

对应conv1的输入为30*30

所以pool3的感受野大小就是30*30


版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

VGGNet笔记

1. 简介VGGNet由牛津大学的视觉几何组(Visual Geometry Group)提出,是ILSVRC-2014中定位任务第一名和分类任务第二名。其突出贡献在于证明使用很小的卷积(3*3),增...

卷积神经网络物体检测之感受野大小计算

学习RCNN系列论文时, 出现了感受野(receptive field)的名词, 感受野的尺寸大小是如何计算的,在网上没有搜到特别详细的介绍, 为了加深印象,记录下自己对这一感念的理解,希望对理解基于...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

深度学习中的感受野计算

参考链接:http://blog.csdn.net/gzq0723/article/details/53138430   http://blog.csdn.net/kuaitoukid/articl...

深度学习——感受野

感受野

卷积层感受野和坐标映射

转载自http://blog.cvmarcher.com/posts/2015/05/17/cnn-trick/ 如有版权问题,请联系博主删除本博客 Receptive Field (感受...

CNN中感受野的计算

感受野(receptive field)是怎样一个东西呢,从CNN可视化的角度来讲,就是输出featuremap某个节点的响应对应的输入图像的区域就是感受野。 比如我们第一层是一个3*3的卷积核...

深度学习(十一)RNN入门学习

RNN中文名又称之为:递归神经网络。在计算机视觉里面用的比较少,我目前看过很多篇计算机视觉领域的相关深度学习的文章,就除了2015 ICCV的一篇图像语意分割文献《Conditional Random...
  • hjimce
  • hjimce
  • 2015-10-13 10:46
  • 10491

深度学习(十)keras学习笔记

keras与torch7的使用非常相似,是最近才火起来的深度学习开源库,底层是用了theano。keras可以说是python版的torch7,对于快速构建CNN模型非常方便。同时也包含了一些最新文献...
  • hjimce
  • hjimce
  • 2015-10-13 10:38
  • 23867

Deep Learning(深度学习)各种网址(持续更新)

http://blog.csdn.net/zouxy09/article/details/8775360/

一文读懂卷积神经网络

申明:本文非笔者原创,原文转载自:http://www.36dsj.com/archives/24006 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional ...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)