DoglegMethod——“狗腿”算法(下)

博主分享了使用Dogleg算法进行函数优化的经历,通过修正梯度计算中的错误,成功实现了高效的求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

好吧,楼主经过努力的调试找BUG,终于可以给大家写这个下篇了,为了验证Dogleg算法对于一般的函数也管用,楼主把优化的函数换成了


y = (x1-1)*(x1-2)*(x1-3)*(x1-4) + (x2-1)*(x2-2)*(x2-3)*(x2-4);


然后,很神奇,不论我怎么调试,结果都是很差很差,而且算法定的方向是原理最小值点的,这让我非常的困惑。


经过不断地调试和思考以及查看

………………

………………

………………

终于……


特么的我发现原来是我梯度函数的+号写成了*号!


由此告诫诸位,如果结果跟预想差太多……应该就是……代码细节写错了= =!~!


Dogleg算法的收敛速度还是极好的,对于这个函数从[1000,1000]这个量级的点开始搜索只需要迭代20步左右!就可以找到极小值。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值