精简代码真心是个技术活

原创 2016年08月31日 14:48:30
把代码写长了不叫本事,能用最短的代码完成同样一件事才真是厉害。 —— 记将320行Matlab代码精简到230行
版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

深度学习中的感受野计算

参考链接:http://blog.csdn.net/gzq0723/article/details/53138430   http://blog.csdn.net/kuaitoukid/articl...

卷积神经网络物体检测之感受野大小计算

学习RCNN系列论文时, 出现了感受野(receptive field)的名词, 感受野的尺寸大小是如何计算的,在网上没有搜到特别详细的介绍, 为了加深印象,记录下自己对这一感念的理解,希望对理解基于...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

CNN中感受野的计算

感受野(receptive field)是怎样一个东西呢,从CNN可视化的角度来讲,就是输出featuremap某个节点的响应对应的输入图像的区域就是感受野。 比如我们第一层是一个3*3的卷积核,那么...

卷积神经网络物体检测之感受野大小计算

学习RCNN系列论文时, 出现了感受野(receptive field)的名词, 感受野的尺寸大小是如何计算的,在网上没有搜到特别详细的介绍, 为了加深印象,记录下自己对这一感念的理解,希望对理解基于...

CNN中感受野的计算

感受野(receptive field)是怎样一个东西呢,从CNN可视化的角度来讲,就是输出featuremap某个节点的响应对应的输入图像的区域就是感受野。 比如我们第一层是一个3*3的卷积核...

CNN 感受野计算

转自 http://blog.csdn.net/kuaitoukid/article/details/46829355 感受野(receptive field)是怎样一个东西呢,从CNN可视化的...

《Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift》阅读笔记与实现

《Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift》阅读笔记

RCNN的安装与简单使用

最近准备从物体检测的角度来重新审视文本检测这个方向,所以看了下CNN大火以后的几篇经典文献,OverFeat,Region CNN, Dense Neural Pattern等等。 对这个方向来说,百...

memset使用注意事项

我在Caffe中用memset给一个数组赋初始值1,但是结果是赋值赋不了,只能用for循环去赋值。至于什么问题,先放着,有时间解决,写个博客,挖个坑。

关于Batch Normalization在Caffe中的使用

在Caffe中使用Batch Normalization需要注意以下两点, 1. 要配合Scale层一起使用,具体参见http://blog.csdn.net/sunbaigui/article/de...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)