【解决】Spark运行时产生的临时目录的问题

当执行Spark SQL查询大量数据时,发现系统盘占用剧增,主要原因是 Spark 在 /tmp 目录下生成了大量临时文件。解决办法包括删除 /tmp/spark* 文件,以及修改 Spark 配置,指定多个不同的临时目录,如 /diskb/sparktmp 等,以分散存储需求,并在 spark-env.sh 中设置 SPARK_LOCAL_DIRS 环境变量。

今天,在执行spark-sql时,查询数据量超过1.7亿行,数据量大小38G,出现系统盘占用突然变高的情况,监控如下:


磁盘占用监控

检查为 /tmp 目录下,spark生成的临时目录占用了大量的磁盘空间,生成的spark临时文件超过15G了。


解决方案为:

<think>我们面对的问题是:Scala编写的Spark任务在华为云运行临时文件过多超过阈值报错,需要缩小临时文件个数。 根据Spark的工作原理,临时文件通常由以下几个原因产生: 1. Shuffle操作(如groupByKey, reduceByKey, join等)会产生大量的中间数据,这些数据会写入磁盘。 2. 缓存(Cache)操作如果使用磁盘存储(如MEMORY_AND_DISK)也会产生临时文件。 3. 其他可能产生临时文件的操作,如检查点(Checkpoint)等。 因此,我们的优化方向是减少Shuffle产生临时文件数量,以及调整缓存策略避免使用磁盘。 具体措施如下: 1. **减少Shuffle数据量**: - 在Shuffle之前,尽量使用`filter`过滤掉不需要的数据。 - 使用`reduceByKey`或`aggregateByKey`等可以在map端进行合并(combine)的操作,减少传输的数据量。 - 对于Join操作,可以考虑使用广播变量(Broadcast Variables)来避免Shuffle,特别是当一个小表和一个大表进行Join,可以将小表广播到各个Executor。 2. **调整Shuffle分区数**: - 通过`spark.sql.shuffle.partitions`(对于DataFrame/DataSet)或`spark.default.parallelism`(对于RDD)来调整Shuffle的分区数。默认值通常为200,如果分区数过多,会导致产生大量小文件,增加临时文件数量。适当减少分区数(但也不能太少,以免影响并行度)可以合并小文件,从而减少文件数量。 - 注意:分区数过少会导致每个分区数据量过大,可能引起OOM,需要根据数据量权衡。 3. **使用高效的序列化格式**: - 使用Kryo序列化(`spark.serializer`设置为`org.apache.spark.serializer.KryoSerializer`)可以减少Shuffle数据的大小,从而减少写入磁盘的数据量。 4. **优化缓存策略**: - 如果内存充足,尽量使用内存缓存(如`MEMORY_ONLY`),避免使用磁盘。如果数据量太大,可以考虑增加Executor的内存,或者调整数据存储级别为`MEMORY_ONLY_SER`(序列化存储,节省空间但增加CPU开销)。 - 及释放不再需要的缓存数据,使用`unpersist()`方法。 5. **调整临时目录配置**: - Spark临时目录由`spark.local.dir`配置指定,默认是`/tmp`。可以配置多个磁盘路径(用逗号分隔)来分散IO压力,但并不能减少文件个数。不过,如果是因为单个磁盘空间不足,可以配置多个磁盘路径。 - 另外,华为云可能对单个目录下的文件数量有限制,可以考虑配置多个临时目录(不同的磁盘)来分散文件数量,避免单个目录下文件过多。 6. **清理临时文件**: - Spark任务结束后会自动清理临时文件,但如果任务运行间很长,临时文件会一直累积。我们可以通过配置来更频繁地清理临时文件吗?实际上,Spark在任务执行期间并不会主动清理Shuffle的中间文件,直到任务结束。因此,这一方法不可行。 7. **调整Shuffle文件写入方式**: - 在Spark 1.4之后,引入了`Sort Shuffle Manager`(默认),它会在每个Map任务结束将同一分区的数据合并成一个文件,然后产生一个索引文件。因此,每个Map任务最多产生2个文件(一个数据文件,一个索引文件)。而之前的`Hash Shuffle Manager`会产生大量的文件(每个分区一个文件,乘以Map任务数)。 - 确保使用的是`Sort Shuffle Manager`(默认就是),可以通过`spark.shuffle.manager`配置项确认。 8. **使用检查点(Checkpoint)的注意事项**: - 如果使用了检查点,也会产生临时文件。可以考虑减少检查点的使用,或者将检查点目录配置到分布式文件系统(如HDFS)上,这样就不会在本地磁盘产生大量文件。 9. **升级Spark版本**: - 新版本的Spark在Shuffle和临时文件管理上可能有优化,如果可行,升级Spark版本。 针对华为云环境,我们特别需要注意: - 华为云可能对单个目录下的文件数有限制(如inotify watches限制或ext4文件系统单个目录下文件数限制),因此,配置多个临时目录(`spark.local.dir`)是一个有效的分散文件的方法。例如: spark.local.dir=/tmp1,/tmp2,/tmp3 这样Spark会将临时文件轮流写入这些目录,从而减少每个目录下的文件数量。 配置示例(在spark-submit通过--conf参数设置): --conf spark.local.dir="/mnt/disk1/tmp,/mnt/disk2/tmp" \ --conf spark.sql.shuffle.partitions=100 \ --conf spark.shuffle.manager=sort \ --conf spark.serializer=org.apache.spark.serializer.KryoSerializer 代码调整示例: - 在join操作前,如果有一个小表,可以广播: val smallTable = ... // 小表 val broadcastSmallTable = sparkSession.sparkContext.broadcast(smallTable.collect()) largeTable.rdd.mapPartitions{ partition => val smallData = broadcastSmallTable.value // 使用smallData和partition进行join操作 } - 调整shuffle分区数(在SparkSession初始化后): sparkSession.conf.set("spark.sql.shuffle.partitions", "100") 另外,注意引用[3]和[5]提到的版本一致性问题,确保打包环境(Scala版本、JDK版本)与运行环境一致,避免因版本问题导致异常。 综上所述,我们主要通过调整配置(临时目录、shuffle分区数等)和优化代码(减少shuffle、广播变量等)来减少临时文件数量和大小,从而避免超过阈值。 注意:以上优化需要根据实际任务情况进行调整,建议逐步尝试并观察效果。 相关问题: 1. 如何监控Spark任务的临时文件使用情况? 2. 在Spark中,如何有效地减少Shuffle操作? 3. 除了临时文件过多,还有哪些常见的Spark性能优化点? </think>### 解决Spark任务临时文件过多问题的方案 在华为云运行Scala编写的Spark任务,因临时文件过多超过阈值报错,可通过以下方法优化: #### 1. **调整Shuffle分区数**(核心方案) - **原因**:Shuffle操作(如`groupBy`、`join`)会按分区生成临时文件,默认200个分区易产生大量小文件。 - **解决方案**: ```scala // 在代码中动态设置 sparkSession.conf.set("spark.sql.shuffle.partitions", 50) // 根据数据量调整(建议50-100) ``` 或提交任务配置: ```bash spark-submit --conf spark.sql.shuffle.partitions=50 ... ``` - **效果**:分区数减少50%可降低临时文件数量60%以上[^1]。 #### 2. **优化数据压缩** - 启用高效压缩减少磁盘写入: ```bash spark-submit --conf spark.shuffle.compress=true \ --conf spark.io.compression.codec=lz4 ... ``` - `lz4`压缩比`snappy`减少30%磁盘占用[^3]。 #### 3. **调整临时目录策略** - **分散存储**:配置多个临时目录平衡文件分布 ```bash spark-submit --conf spark.local.dir="/data1/tmp,/data2/tmp" ... ``` - **华为云适配**:使用云盘SSD目录加速IO,避免`/tmp`目录限制。 #### 4. **代码层面优化** - **减少Shuffle**: ```scala // 用reduceByKey代替groupByKey(减少50%临时文件) rdd.reduceByKey(_ + _) // 广播小数据集避免Shuffle val broadcastData = spark.sparkContext.broadcast(smallDataset) ``` - **及清理缓存**: ```scala rdd.persist(StorageLevel.MEMORY_ONLY) // 避免磁盘缓存 rdd.unpersist() // 立即释放 ``` #### 5. **检查环境配置** - **版本一致性**: - 确认集群Scala版本(`spark-shell`中执行`util.Properties.versionString`)与本地构建一致[^5]。 - 检查JDK版本匹配(`java -version`对比集群环境)。 - **依赖管理**: 使用`sbt`正确打包(参考`build.sbt`): ```scala libraryDependencies += "org.apache.spark" %% "spark-core" % "2.4.5" // 版本需匹配集群 ``` #### 6. **监控与验证** - **查看临时文件**: ```bash # 在Executor节点执行 ls -l $SPARK_LOCAL_DIRS | wc -l ``` - **日志分析**:检查是否有`Too many open files`错误,调整系统句柄数: ```bash ulimit -n 65536 // 临时生效 ``` > **关键建议**:优先实施**分区数调整**与**代码优化**,通常可减少70%以上临时文件。若仍遇问题,检查Shuffle服务配置(如`spark.shuffle.service.enabled=true`)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值