本文参考文献附在最后。是对参考文献的理解。
1:此算法解决凸优化问题模型如下:
minF(x)=g(x)+h(x)
其中
g(x)
凸的,可微的。
h(x)
闭的凸的。其中
g(x),h(x)是由F(x)
分离出来的两项,当
F(x)
分离的结果不同,即使是同一个问题,算法的实现方式也不尽相同,
2:算法的实现
1)对于凸函数 h(x) 的proximal map如下:
proxh(x)=argminu(h(u)+1/2||u−x

本文详细介绍了Proximal Gradient Method,一种用于解决凸优化问题的算法。文章通过三个部分展开,包括算法模型阐述、具体算法步骤及代码实现。此外,还提到了如何调整步长以优化算法性能,并引用了相关参考文献作为理论依据。
最低0.47元/天 解锁文章
17





