社会化搜索与推荐浅析-小例子说明什么是贝叶斯及证明过程

原创 2012年03月23日 11:51:43

本文由larrylgq编写,转载请注明出处:http://blog.csdn.net/larrylgq/article/details/7395261

作者:吕桂强

邮箱:larry.lv.word@gmail.com


贝叶斯:突破在于将先验概率转换成后验概率,但是原理很简单

经典例子一:一座别墅在过去的 20 年里一共发生过 2 次被盗,别墅的主人有一条狗,狗平均每周晚上叫 3 次,在盗贼入侵时狗叫的概率被估计为 0.9,问题是:在狗叫的时候发生入侵的概率是多少?

我们假设 A 事件为狗在晚上叫,B 为盗贼入侵,则 P(A) = 3 / 7,P(B)=2/(20·365)=2/7300,P(A | B) = 0.9,

按照公式很容易得出结果:P(B|A)=0.9*(2/7300)*(7/3)=0.00058

例子2:根据之前抽的球的眼测,预测下一次抽的球的颜色
如果已知袋子里有5个红球,3个黑球,那么我们很容易知道,我们在袋子里拿出一个球,这个球是红球的概率。
但是如果我们事先并不知道袋子里红球黑球的分布,甚至不知道袋子里一共有多少球,那么我们就不能直接算出拿出一个球,这个球是红球的概率。
但是我们开始从袋子里拿球,当拿的球越多,根据拿出的这些球的颜色,我们可以推出下一个球是红球的概率
例如:根据laplace平滑,我们可以这样算
红球的次数+1
------------
(红球的次数+1)+(黑球的次数+1)
可以算出拿第一个球是红球的概率是1/2
如果连续5个是黑球那么第六个球是红球的概率是
0+1
---
(0+1)+(5+1)
=1/7
这个值小于5分之一大于0,是一个比较合适的概率

 

贝叶斯证明过程

因为设P(A)>0 则有
P(AB)=P(B∣A)P(A)
P(AB)是A和B2个独立事件都会发生的概率
P(B|A)是在确定在A发生的情况下,B发生的概率
P(A)是A发生的概率
所以=》P(AB)=P(B∣A)P(A)=P(A|B)P(B)

又根据全概率公式:
存在B1, B2, …,Bn-1这n个互不相容区域,则
全体样本Ω=P(B1)+P(B2)+…+P(Bn)=1
则对任意事件A⊂Ω有:
P(Bi|A)=P(Bi)P(A|Bi)/[P(A|B1)P(B1)+P(A|B2)P(B2)+...+(P(A|Bn)P(Bn)]

 

 

下一节会讲一下使用朴素贝叶斯的实例

社会化推荐算法

社会化推荐 本文是论文《一种结合推荐对象间关联关系的社会化推荐算法》的笔记(下)。该论文提出的算法是以PMF为框架基础的。因而若对PMF不太了解的话,可以参考我的上一篇文章脑补一下,当然,那篇文章只是...
  • xinzhangyanxiang
  • xinzhangyanxiang
  • 2014年03月17日 23:46
  • 4168

非常全面的贝叶斯网络介绍 非常多的例子说明

0. 前言 这是一篇关于贝叶斯方法的科普文,我会尽量少用公式,多用平白的语言叙述,多举实际例子。更严格的公式和计算我会在相应的地方注明参考资料。贝叶斯方法被证明是非常 general 且强大的推...
  • xiaozezepingping
  • xiaozezepingping
  • 2014年05月26日 16:10
  • 15296

贝叶斯公式推导

贝叶斯公式是贝叶斯分类、贝叶斯网络的基础。理解它的推导过程,对理解
  • scjthree
  • scjthree
  • 2014年06月12日 10:35
  • 3210

程序员必知:平凡而又神奇的贝叶斯方法

0. 前言 1. 历史     1.1 一个例子:自然语言的二义性     1.2 贝叶斯公式 2. 拼写纠正 3. 模型比较与贝叶斯奥卡姆剃刀     3.1 再访拼写纠正 ...
  • wxing2008666
  • wxing2008666
  • 2013年06月22日 13:07
  • 1225

社会化搜索与推荐浅析-智能web浅析

web的现状: 大多数的传统web应用是不智能的,特点就是对所有用户的输入的反馈是相同的。 所需要做的是:系统在反馈之前先考虑用户的所有行为,和所有用户在不同时间的行为,及其它各种可能有用的信息进...
  • larrylgq
  • larrylgq
  • 2012年03月15日 22:22
  • 1487

社会化搜索与推荐浅析-聚类与分类

分类与聚类的主要区别在于: 分类算法中,类别是已知的,类别数不变;而 聚类中,类别是未知的,类别数不确定。 分类需要依赖先验概率,把所有的数据点所组成的空间进行划分,组成一个个不同类别的集合,这...
  • larrylgq
  • larrylgq
  • 2012年03月23日 11:50
  • 1510

王垠:原因与证明

证明 我在 Cornell 的时候经常遇到这样的问题,那就是教授们一上课就在黑板上写长篇的“定理证明”,全体同学认认真真在下面抄笔记,就连只有十来个人的小课也是那样。有些写字速度慢的人就不得不带...
  • beswkwangbo
  • beswkwangbo
  • 2013年11月13日 14:13
  • 877

举例说明 什么叫期货?

期货两个功能   1.套期保值   一些企业常年需要某中原料,比如大豆   那么,企业预算的时候要有一个可以接受的进货价格,   太高就会影响利润,但到没货的时候不可能不进,这里指没有现货...
  • u014756827
  • u014756827
  • 2016年06月30日 22:53
  • 724

社会化搜索与推荐浅析-大数据下的实时搜索

本文由larrylgq编写,转载请注明出处:http://blog.csdn.net/larrylgq/article/details/7399237 作者:吕桂强 邮箱:larry.lv.wor...
  • larrylgq
  • larrylgq
  • 2012年04月09日 16:29
  • 1480

社会化搜索与推荐浅析-朴素贝叶斯+laplace平滑文本分类器推导过程及java版实现

本文由larrylgq编写,转载请注明出处:http://blog.csdn.net/larrylgq/article/details/7395261 作者:吕桂强 邮箱:larry.lv.wor...
  • larrylgq
  • larrylgq
  • 2012年03月26日 18:28
  • 7207
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:社会化搜索与推荐浅析-小例子说明什么是贝叶斯及证明过程
举报原因:
原因补充:

(最多只允许输入30个字)