社会化搜索与推荐浅析-小例子说明什么是贝叶斯及证明过程

原创 2012年03月23日 11:51:43

本文由larrylgq编写,转载请注明出处:http://blog.csdn.net/larrylgq/article/details/7395261

作者:吕桂强

邮箱:larry.lv.word@gmail.com


贝叶斯:突破在于将先验概率转换成后验概率,但是原理很简单

经典例子一:一座别墅在过去的 20 年里一共发生过 2 次被盗,别墅的主人有一条狗,狗平均每周晚上叫 3 次,在盗贼入侵时狗叫的概率被估计为 0.9,问题是:在狗叫的时候发生入侵的概率是多少?

我们假设 A 事件为狗在晚上叫,B 为盗贼入侵,则 P(A) = 3 / 7,P(B)=2/(20·365)=2/7300,P(A | B) = 0.9,

按照公式很容易得出结果:P(B|A)=0.9*(2/7300)*(7/3)=0.00058

例子2:根据之前抽的球的眼测,预测下一次抽的球的颜色
如果已知袋子里有5个红球,3个黑球,那么我们很容易知道,我们在袋子里拿出一个球,这个球是红球的概率。
但是如果我们事先并不知道袋子里红球黑球的分布,甚至不知道袋子里一共有多少球,那么我们就不能直接算出拿出一个球,这个球是红球的概率。
但是我们开始从袋子里拿球,当拿的球越多,根据拿出的这些球的颜色,我们可以推出下一个球是红球的概率
例如:根据laplace平滑,我们可以这样算
红球的次数+1
------------
(红球的次数+1)+(黑球的次数+1)
可以算出拿第一个球是红球的概率是1/2
如果连续5个是黑球那么第六个球是红球的概率是
0+1
---
(0+1)+(5+1)
=1/7
这个值小于5分之一大于0,是一个比较合适的概率

 

贝叶斯证明过程

因为设P(A)>0 则有
P(AB)=P(B∣A)P(A)
P(AB)是A和B2个独立事件都会发生的概率
P(B|A)是在确定在A发生的情况下,B发生的概率
P(A)是A发生的概率
所以=》P(AB)=P(B∣A)P(A)=P(A|B)P(B)

又根据全概率公式:
存在B1, B2, …,Bn-1这n个互不相容区域,则
全体样本Ω=P(B1)+P(B2)+…+P(Bn)=1
则对任意事件A⊂Ω有:
P(Bi|A)=P(Bi)P(A|Bi)/[P(A|B1)P(B1)+P(A|B2)P(B2)+...+(P(A|Bn)P(Bn)]

 

 

下一节会讲一下使用朴素贝叶斯的实例

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

“个性化视频推荐”算法的Storm实现方案

随着互联网的蓬勃发展,近年来利用互联网技术实现各类面向个人用户的服务系统层出不穷,其中在线视频网站系统就是其中一类典型的服务场景,利用用户在站点上实际的行为活动数据,准确地为每个用户推荐个性化、时效性...

“个性化视频推荐”算法的Storm实现方案

http://blog.csdn.net/xreztento/article/details/52588530

社会化搜索与推荐浅析-大数据下的实时搜索

本文由larrylgq编写,转载请注明出处:http://blog.csdn.net/larrylgq/article/details/7399237 作者:吕桂强 邮箱:larry.lv.wor...

How to Use the restrict Qualifier in C

Using the restrict qualifier appropriately in C programs may allow the compiler to produce signific...
  • JoeM
  • JoeM
  • 2006-08-21 21:54
  • 1013

twitter storm常用命令

提交Topologies 命令格式:storm jar 【jar路径】 【拓扑包名.拓扑类名】 【拓扑名称】 样例:storm jar /storm-starter.jar storm.start...

社会化搜索与推荐浅析-朴素贝叶斯+laplace平滑文本分类器推导过程及java版实现

本文由larrylgq编写,转载请注明出处:http://blog.csdn.net/larrylgq/article/details/7395261 作者:吕桂强 邮箱:larry.lv.wor...

朴素贝叶斯——原理浅析和应用

机器学习十大算法——朴素贝叶斯

贝叶斯从浅入深详细解析,详细例子解释

概率论只不过是把常识用数学公式表达了出来。 ——拉普拉斯 0. 前言 这是一篇关于贝叶斯方法的科普文,我会尽量少用公式,多用平白的语言叙述,多举实际例子。更严格的公式和计算我会在相应的地方注明参...

[学习] 数据挖掘-贝叶斯分类(例子,代码)

什么是贝叶斯分类: 首先举个经典的例子, A病症检测: 有1/100的人A病症检测会成阳性,地球上有1/1000的人会的A病症,得了A病症的人有90%的概率显示A病症检测阳性,那么当一个人A病症检测阳...
  • wty19
  • wty19
  • 2014-03-13 17:25
  • 992
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)