定义:
P(A):A事件发生的概率-边缘概率
P(A|B):在B的条件下A的概率-条件概率、后验概率
P(AB) 、P(A,B)、P(A∩B):AB共同发生的概率-联合概率
公式:
P(Ai|B) = P(AiB) / P(B) = P(Ai) P(B|Ai) / Σj P(Aj) P(B|Aj)
P(B) = Σj P(Aj) P(B|Aj)
Σj P(Aj) P(B|Aj) = P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)
P(规律|现象) = P(现象|规律)P(规律)/P(现象)
例子:
1.一座别墅在过去的 20 年里一共发生过 2 次被盗,别墅的主人有一条狗,狗平均每周晚上叫 3 次,在盗贼入侵时狗叫的概率被估计为 0.9,问题是:在狗叫的时候发生入侵的概率是多少?
我们假设 A 事件为狗在晚上叫,B 为盗贼入侵,则以天为单位统计,P(A) = 3/7,P(B) = 2/(20*365) = 2/7300,P(A|B) = 0.9,按照公式很容易得出结果:P(B|A) = 0.9*(2/7300) / (3/7) = 0.00058
2.现分别有 A、B 两个容器,在容器 A 里分别有 7 个红球和 3 个白球,在容器 B 里有 1 个红球和 9 个白球,现已知从这两个容器里任意抽出了一个红球,问这个球来自容器 A 的概率是多少?
假设已经抽出红球为事件 B,选中容器 A 为事件 A,则有:P(B) = 8/20,P(A) = 1/2,P(B|A) = 7/10,按照公式,则有:P(A|B) = (7/10)*(1/2) / (8/20) = 0.875
3.挑战者B不知道原垄断者A是属于高阻挠成本类型还是低阻挠成本类型,但B知道,如果A属于高阻挠成本类型,B进入市场时A进行阻挠的概率是20%(此时A为了保持垄断带来的高利润,不计成本地拼命阻挠);如果A属于低阻挠成本类型,B进入市场时A进行阻挠的概率是100%。
博弈开始时,B认为A属于高阻挠成本企业的概率为70%,因此,B估计自己在进入市场时,受到A阻挠的概率为:
0.7×0.2+0.3×1=0.44
0.44是在B给定A所属类型的先验概率下,A可能采取阻挠行为的概率。
当B进入市场时,A确实进行阻挠。使用贝叶斯法则,根据阻挠这一可以观察到的行为,B认为A属于高阻挠成本企业的概率变成
A属于高成本企业的概率=0.7(A属于高成本企业的先验概率)×0.2(高成本企业对新进入市场的企业进行阻挠的概率)÷0.44=0.32
根据这一新的概率,B估计自己在进入市场时,受到A阻挠的概率为:
0.32×0.2+0.68×1=0.744
如果B再一次进入市场时,A又进行了阻挠。使用贝叶斯法则,根据再次阻挠这一可观察到的行为,B认为A属于高阻挠成本企业的概率变成。
A属于高成本企业的概率=0.32(A属于高成本企业的先验概率)×0.2(高成本企业对新进入市场的企业进行阻挠的概率)÷0.744=0.086
这样,根据A一次又一次的阻挠行为,B对A所属类型的判断逐步发生变化,越来越倾向于将A判断为低阻挠成本企业了。
题目解析:
A1=1-A2
P(A1|B)=阻挠的情况下A为高成本的概率
P(B|A1) =A为高阻挠成本的情况下阻挠的概率 0.2
P(B|A2) =A为低阻挠成本的情况下阻挠的概率 1
P(A1) =A为高阻挠成本的概率 0.7
P(A2) =A为低阻挠成本的概率 0.3
P(B) =阻挠的概率
阻挠的情况下A为高成本的概率
P(Ai|B) = P(B|Ai)P(Ai) / ΣjP(B|Aj)P(Aj)
P(Ai|B) = 0.2*0.7/1*0.3
P(AilB) = 0.14/0.3
P(Ai|B) = 0.4666...
阻挠的概率
P(B) = P(Ai)*P(B|A1)ΣjP(Aj)*P(B|A2)
P(B) = 0.7×0.2+0.3×1=0.44
P(B) = 0.14+0.3=0.44
例子:
P(A1|B1) =报名的情况下A为男生的概率 0.4 12
P(A1|B2) =报名的情况下A为女生的概率 0.6 18
P(B1|A1) =A为男生情况下报名的概率
P(B1|A2) =A为女生的情况下报名的概率
P(A1) =A为男生的概率 0.4 400
P(A2) =A为女生的概率 0.6 600
P(B1) =A报名的概率 0.03 30
P(B2) =A不报名的概率 0.97 970
求A为男生的情况下报名的概率
P(B1|A1) = P(A|Bi)P(Bi)/ΣjP(A|Bj)P(Bj)
= P(A1|B1)P(B1)/(P(A1|B1)P(B1))+(P(A1|B2)P(B2))
= 0.4*0.03/(0.4*0.03)+0.6*0.97
=0.012/(0.012+0.582)
≈0.02
引用:
用一个引例介绍后面两个公式:村子里有三个小偷,事件B={村子失窃},已知小偷们的偷窃成功率依次是,除夕夜去偷的概率依次是
全概率公式:
求:村庄除夕夜失窃的概率
贝叶斯公式:
求:在村子失窃的条件下,偷窃者是某个小偷的概率