相似度计算方法

原创 2015年07月06日 16:49:56

欧几里德距离

>
计算两组数据之间的距离,偏好越相似的人其距离就越短。。。为了处理方便,需要一个函数来对偏好越相近的情况给出越大的值(0~1之间)。

皮尔逊相关系数相关度评价

>
皮尔逊相关系数是判断两组叔叔与某一直线拟合程度的一种度量。其对应的公式比欧几里德距离评价的计算公式要复杂,但是在数据不是很规范时会倾向于给出更好的结果。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Mahout中相似度计算方法介绍

在现实中广泛使用的推荐系统一般都是基于协同过滤算法的,这类算法通常都需要计算用户与用户或者项目与项目之间的相似度,对于数据量以及数据类型不同的数据源,需要不同的相似度计算方法来提高推荐性能,在maho...

推荐系统中的相似度计算方法总结及实现代码(python)

相似度的计算是推荐系统非常重要的环节,包括:用户与用户之间的相似度,物品与物品之间的相似度或者用户与物品的相关性。       下面以在协同过滤中计算两个用户的相似度来介绍几种常用的相似度计算方法。其...

推荐系统中常见的几种相似度计算方法和其适用数据

在推荐系统中,相似度的计算是一个很重要的课题。而相似度的计算方法多种多样,今天我们来把这些方法比较一下,也为以后做项目留个笔记。其实无论是基于user的cf还是基于item的cf,亦或是基于svd的推...

Levenshtein Distance Levenshtein 编辑距离——一种相似度的计算方法

/********************************************* Levenshtein Distance Algorithm *******************...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)