除法逆元入门

本文介绍了数论中的乘法逆元概念,通过扩展欧几里得算法、费马小定理和欧拉函数来求解逆元。扩展欧几里得算法在a与n互素时提供唯一解;费马小定理指出在素数n下,a^(n-2)为a的逆元;欧拉函数φ(n)则给出了与n互素的数的数量,并在n为素数时,a^(φ(n)-1)为a的逆元。文章提供了相关代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于m=(a/b)(mod p)问题
由于除法不能用同余定理,我们需要将除法转换成乘法
( a / b ) % p =a * inv ( b , p ) %p =( a%p * inv ( b , p )%p ) %p

接下来就是乘法求逆元了,
可以看博客链接 乘法逆元数论

乘法

逆元

扩展欧几里得算法

要求a,n互为素数,存在唯一解

代码部分

int extgcd(int a, int b, int& x, int& y)
{
    int d = a;
    if(b != 0)
    {
        d = extgcd(b, a % b, y, x);
        y -= (a / b) * x;
    }
    else
    {
        x = 1;
        y = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值