对于m=(a/b)(mod p)问题
由于除法不能用同余定理,我们需要将除法转换成乘法
( a / b ) % p =a * inv ( b , p ) %p =( a%p * inv ( b , p )%p ) %p
接下来就是乘法求逆元了,
可以看博客链接 乘法逆元数论
乘法
逆元
扩展欧几里得算法
要求a,n互为素数,存在唯一解
代码部分
int extgcd(int a, int b, int& x, int& y)
{
int d = a;
if(b != 0)
{
d = extgcd(b, a % b, y, x);
y -= (a / b) * x;
}
else
{
x = 1;
y =