关于除法与乘法逆元关系的一些理解

*表示普通乘法,/表示普通除法,⊙n表示模n乘法

首先可以证明<Zn,⊙n>是一个群,其中Zn为模n的简化剩余系

设x,y∈Zn,则有x,y与n互质,所以 x⊙n y = (x*y)mod n = z,z与n互质,z∈Zn,所以⊙n 在Zn上是封闭

其单位元为1,且⊙n满足结合律,

利用公因数理论可知,x∈Zn,gcd(x, n) = 1,所以必存在y,使得(x*y) mod n= 1,设gcd(y, n) = k,则根据 

(x*y) mod n= 1可知k必为1,所以y属于Zn,所以任意x∈Zn,存在逆元

 

设正整数A,B 与n互质且A/B = C,C为正整数, 已知(A/B) mod n= C mod n,设(a,b)=(A, B) mod n,证明

a ⊙n b^-1 = C mod n,其中b^-1表示b的逆元

首先不难得出C也与n互质,所以设c = C mod n,则c属于Zn

A mod n = (A/B)*B mod n = (A/B mod n)*(B mod n)  mod n = c*b mod  n = a mod n

因a,b,c都属于Zn,因此有a*b^-1 mod n = (c*b)*b^-1 mod n = c mod n

 

 

以后遇到答案对素数取模的运算,其中的除法可以用乘以其在<Zn,⊙m>的逆元来代替

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值