深入理解二叉搜索树(BST)

深入理解二叉搜索树(BST)

一棵二叉搜索树(BST)是以一棵二叉树来组织的,可以用链表数据结构来表示,其中,每一个结点就是一个对象,一般地,包含数据内容key和指向孩子(也可能是父母)的指针属性。如果某个孩子结点不存在,其指针属性值为空(NIL)。
二叉搜索树中的关键字key的存储方式总是满足二叉搜索树的性质:

设x是二叉搜索树中的一个结点。如果y是x左子树中的一个结点,那么会有y.key<=x.key;如果y是x右子树中的一个节点,那么有y.key>=x.key。

二叉搜索树查找:
顾名思义,二叉搜索树很多时候用来进行数据查找。这个过程从树的根结点开始,沿着一条简单路径一直向下,直到找到数据或者得到NIL值。
如下图所示:

这里写图片描述

由图可以看出,对于遇到的每个结点x,都会比较x.key与k的大小,如果相等,就终止查找,否则,决定是继续往左子树还是右子树查找。因此,整个查找过程就是从根节点开始一直向下的一条路径,若假设树的高度是h,那么查找过程的时间复杂度就是O(h)。

BST查找的递归算法与非递归算法伪代码分别如下:

//递归实现
Tree_Search(x, k):
if x == NIL or x.key == k :
    return x
if k < x.key
    return Tree_Search(x.left, k)
else return Tree_Search(x.right, k)
//非递归迭代实现
Tree_Search(x, k) :
while x!=NIL and k!=x.key:
    if k < x.key
        x = x.left
    else x = x.right
return x

一般来说,迭代方式的效率比递归方式高很多。

前驱和后继:
对于给定的一棵二叉搜索树,如果所有结点的key均不相同,那么结点x的前驱是指小于x.key的最大关键字的结点;而一个结点x的后继是指大于x.key的最小关键字的结点。
现在,我们考虑如何求解一个结点x的后继,(求前驱也类似,对称的结构):
对于结点x,如果其右子树不为空,那么x的后继一定是其右子树的最左边的结点。而如果x的右子树为空,并且有一个后继,那么其后继必然是x的最底层的祖先,并且后继的左孩子也是x的一个祖先,因此,为了找到这样的后继结点,只需要从x开始沿着树向上移动,直到遇到一个结点,这个结点是它的双亲的左孩子。(例如,在上图的例子中,结点12的后继结点是16.)
给出求后继结点的伪代码:

Tree_Successor(x):
if x.right != NIL
    return Tree_MinNode(x.right)
y = x.p
while y!=NIL and x == y.right
    x = y
    y = y.p
return y
Tree_MinNode(x):
while x.left != NIL
    x = x.left
return x

BST插入
BST的插入过程非常简单,很类似与二叉树搜索树的查找过程。当需要插入一个新结点时,从根节点开始,迭代或者递归向下移动,直到遇到一个空的指针NIL,需要插入的值即被存储在该结点位置。这里给出迭代插入算法,递归方式的比较简单。

Tree_Insert(T, z):
y = NIL
x = T.root
while x != NIL
    y = x
    if  z.key < x.key
        x = x.left
    else x = x.right
z.p = y
if y == NIL
    T.root = z
else if z.key < y.key
    y.left = z
else y.right = z

下图给出插入结点17的示意图:

这里写图片描述

同其他搜索树类似于,二叉搜索树(BST)的插入操作的时间复杂度为O(h).

BST删除
二叉搜索树的结点删除比插入较为复杂,总体来说,结点的删除可归结为三种情况:
1、 如果结点z没有孩子节点,那么只需简单地将其删除,并修改父节点,用NIL来替换z;
2、 如果结点z只有一个孩子,那么将这个孩子节点提升到z的位置,并修改z的父节点,用z的孩子替换z;
3、 如果结点z有2个孩子,那么查找z的后继y,此外后继一定在z的右子树中,然后让y替换z。

这三种情况中,1和2比较简单,3相对棘手。
我们通过示意图,描述这几种情况:
情况1:
这里写图片描述
情况2:
这里写图片描述
情况3:
可分为两种类型,一种是z的后继y位于其右子树中,但没有左孩子,也就是说,右孩子y是其后继。如下:
这里写图片描述
另外一种类型是,z的后继y位于z的右子树中,但并不是z的右孩子,此时,用y的右孩子替换y,然后再用y替换z。如下:
这里写图片描述
二叉树的遍历:
最后,我们考虑二叉搜索树的遍历。
二叉搜索树的性质允许通过简单的递归算法来输出树中所有的关键字,有三种方式:先序遍历、中序遍历、后序遍历。其中,先序遍历中输出根的关键字在其左右子树的关键字之前;中序遍历中输出根的关键词位于其左子树的关键字和右子树的关键字之间;后序遍历中输出根的关键字在左右子树的关键字之后。
如果x是一棵有n个结点子树的根,那么调用Preorder_Tree_Walk(x)或者Inorder_Tree_Walk(x)或者Postorder_Tree_Walk(x)需要O(n)时间。

//先序遍历
Preorder_Tree_Walk(x):
if x!=NIL:
    print x.key
    Preorder_Tree_Walk(x.left)
    Preorder_Tree_Walk(x.right)
//中序遍历
Inorder_Tree_Walk(x):
    Inorder_Tree_Walk(x.left)
    print x.key
    Inorder_Tree_Walk(x.right)
//后序遍历
Postorder_Tree_Walk(x):
    Postorder_Tree_Walk(x.left)
    Postorder_Tree_Walk(x.right)
    print x.key

用指针解决二叉搜索树的相关问题

/*************************************************************************
  这是一个二叉查找树,实现了以下操作:插入结点、构造二叉树、删除结点、查找、
  查找最大值、查找最小值、查找指定结点的前驱和后继。上述所有操作时间复杂度
  均为o(h),其中h是树的高度
  注释很详细,具体内容就看代码吧
*************************************************************************/

#include<stdio.h>
#include<stdlib.h>

//二叉查找树结点描述
typedef int KeyType;
typedef struct Node
{
    KeyType key;          //关键字
    struct Node * left;   //左孩子指针
    struct Node * right;  //右孩子指针
    struct Node * parent; //指向父节点指针
}Node,*PNode;

//往二叉查找树中插入结点
//插入的话,可能要改变根结点的地址,所以传的是二级指针
void inseart(PNode * root,KeyType key)
{
    //初始化插入结点
    PNode p=(PNode)malloc(sizeof(Node));
    p->key=key;
    p->left=p->right=p->parent=NULL;
    //空树时,直接作为根结点
    if((*root)==NULL){
        *root=p;
        return;
    }
    //插入到当前结点(*root)的左孩子
    if((*root)->left == NULL && (*root)->key > key){
        p->parent=(*root);
        (*root)->left=p;
        return;
    }
    //插入到当前结点(*root)的右孩子
    if((*root)->right == NULL && (*root)->key < key){
        p->parent=(*root);
        (*root)->right=p;
        return;
    }
    if((*root)->key > key)
        inseart(&(*root)->left,key);
    else if((*root)->key < key)
        inseart(&(*root)->right,key);
    else
        return;
}

//查找元素,找到返回关键字的结点指针,没找到返回NULL
PNode search(PNode root,KeyType key)
{
    if(root == NULL)
        return NULL;
    if(key > root->key) //查找右子树
        return search(root->right,key);
    else if(key < root->key) //查找左子树
        return search(root->left,key);
    else
        return root;
}

//查找最小关键字,空树时返回NULL
PNode searchMin(PNode root)
{
    if(root == NULL)
        return NULL;
    if(root->left == NULL)
        return root;
    else  //一直往左孩子找,直到没有左孩子的结点
        return searchMin(root->left);
}

//查找最大关键字,空树时返回NULL
PNode searchMax(PNode root)
{
    if(root == NULL)
        return NULL;
    if(root->right == NULL)
        return root;
    else  //一直往右孩子找,直到没有右孩子的结点
        return searchMax(root->right);
}

//查找某个结点的前驱
PNode searchPredecessor(PNode p)
{
    //空树
    if(p==NULL)
        return p;
    //有左子树、左子树中最大的那个
    if(p->left)
        return searchMax(p->left);
    //无左子树,查找某个结点的右子树遍历完了
    else{
        if(p->parent == NULL)
            return NULL;
        //向上寻找前驱
        while(p){
            if(p->parent->right == p)
                break;
            p=p->parent;
        }
        return p->parent;
    }
}

//查找某个结点的后继
PNode searchSuccessor(PNode p)
{
    //空树
    if(p==NULL)
        return p;
    //有右子树、右子树中最小的那个
    if(p->right)
        return searchMin(p->right);
    //无右子树,查找某个结点的左子树遍历完了
    else{
        if(p->parent == NULL)
            return NULL;
        //向上寻找后继
        while(p){
            if(p->parent->left == p)
                break;
            p=p->parent;
        }
        return p->parent;
    }
}

//根据关键字删除某个结点,删除成功返回1,否则返回0
//如果把根结点删掉,那么要改变根结点的地址,所以传二级指针
int deleteNode(PNode* root,KeyType key)
{
    PNode q;
    //查找到要删除的结点
    PNode p=search(*root,key);
    KeyType temp;    //暂存后继结点的值
    //没查到此关键字
    if(!p)
        return 0;
    //1.被删结点是叶子结点,直接删除
    if(p->left == NULL && p->right == NULL){
        //只有一个元素,删完之后变成一颗空树
        if(p->parent == NULL){
            free(p);
            (*root)=NULL;
        }else{
            //删除的结点是父节点的左孩子
            if(p->parent->left == p)
                p->parent->left=NULL;
            else  //删除的结点是父节点的右孩子
                p->parent->right=NULL;
            free(p);
        }
    }

    //2.被删结点只有左子树
    else if(p->left && !(p->right)){
        p->left->parent=p->parent;
        //如果删除是父结点,要改变父节点指针
        if(p->parent == NULL)
            *root=p->left;
        //删除的结点是父节点的左孩子
        else if(p->parent->left == p)
            p->parent->left=p->left;
        else //删除的结点是父节点的右孩子
            p->parent->right=p->left;
        free(p);
    }
    //3.被删结点只有右孩子
    else if(p->right && !(p->left)){
        p->right->parent=p->parent;
        //如果删除是父结点,要改变父节点指针
        if(p->parent == NULL)
            *root=p->right;
        //删除的结点是父节点的左孩子
        else if(p->parent->left == p)
            p->parent->left=p->right;
        else //删除的结点是父节点的右孩子
            p->parent->right=p->right;
        free(p);
    }
    //4.被删除的结点既有左孩子,又有右孩子
    //该结点的后继结点肯定无左子树(参考上面查找后继结点函数)
    //删掉后继结点,后继结点的值代替该结点
    else{
        //找到要删除结点的后继
        q=searchSuccessor(p);
        temp=q->key;
        //删除后继结点
        deleteNode(root,q->key);
        p->key=temp;
    }
    return 1;
}

//创建一棵二叉查找树
void create(PNode* root,KeyType *keyArray,int length)
{
    int i;
    //逐个结点插入二叉树中
    for(i=0;i<length;i++)
        inseart(root,keyArray[i]);
}

int main(void)
{
    int i;
    PNode root=NULL;
    KeyType nodeArray[11]={15,6,18,3,7,17,20,2,4,13,9};
    create(&root,nodeArray,11);
    for(i=0;i<2;i++)
        deleteNode(&root,nodeArray[i]);
    printf("%d\n",searchPredecessor(root)->key);
    printf("%d\n",searchSuccessor(root)->key);
    printf("%d\n",searchMin(root)->key);
    printf("%d\n",searchMax(root)->key);
    printf("%d\n",search(root,13)->key);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值