ufldl学习笔记与编程作业:Softmax Regression(vectorization加速)

ufldl学习笔记与编程作业:Softmax Regression(vectorization加速)


ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践。

在deep learning高质量群里面听一些前辈说,不必深究其他机器学习的算法,可以直接来学dl。

于是最近就开始搞这个了,教程加上matlab编程,就是完美啊。

新教程的地址是:http://ufldl.stanford.edu/tutorial/


本节是对ufldl学习笔记与编程作业:Softmax Regression(softmax回归)版本的改进。


哈哈,把向量化的写法给写出来了,尼玛好快啊。只需要2分钟,200迭代就跑完了。昨晚的for循环写法跑了我1个半小时。

其实实现向量化写法,要把各种矩阵给在纸上写出来。



1 感谢tornadomeet,虽然他做的是旧教程的实验,但是从他那里学了几个matlab函数。http://www.cnblogs.com/tornadomeet/archive/2013/03/23/2977621.html

比如sparse和full。‘

2 还有从旧教程http://deeplearning.stanford.edu/wiki/index.php/Exercise:Softmax_Regression

学了

% M is the matrix as described in the text
M = bsxfun(@rdivide, M, sum(M))

3 新教程学到了

I=sub2ind(size(A), 1:size(A,1), y);
values = A(I);

以下是softmax_regression_vec.m代码:

function [f,g] = softmax_regression_vec(theta, X,y)
  %
  % Arguments:
  %   theta - A vector containing the parameter values to optimize.
  %       In minFunc, theta is reshaped to a long vector.  So we need to
  %       resize it to an n-by-(num_classes-1) matrix.
  %       Recall that we assume theta(:,num_classes) = 0.
  %
  %   X - The examples stored in a matrix.  
  %       X(i,j) is the i'th coordinate of the j'th example.
  %   y - The label for each example.  y(j) is the j'th example's label.
  %
  m=size(X,2);
  n=size(X,1);

  %theta本来是矩阵,传参的时候,theta(:)这样进来的,是一个vector,只有一列,现在我们得把她变为矩阵
  % theta is a vector;  need to reshape to n x num_classes.
  theta=reshape(theta, n, []);
  num_classes=size(theta,2)+1;
  
  % initialize objective value and gradient.
  f = 0;
  g = zeros(size(theta));

  h = theta'*X;%h(k,i)第k个theta,第i个样本
  a = exp(h);
  a = [a;ones(1,size(a,2))];%加1行
  p = bsxfun(@rdivide,a,sum(a));
  c = log2(p);
  i = sub2ind(size(c), y,[1:size(c,2)]);
  values = c(i);
  f = -sum(values);

  d = full(sparse(1:m,y,1));
  d = d(:,1:(size(d,2)-1));
  p = p(1:(size(p,1)-1),:);%减1行
  g = X*(p'.-d);

  %
  % TODO:  Compute the softmax objective function and gradient using vectorized code.
  %        Store the objective function value in 'f', and the gradient in 'g'.
  %        Before returning g, make sure you form it back into a vector with g=g(:);
  %
%%% YOUR CODE HERE %%%
  
  g=g(:); % make gradient a vector for minFunc

本文作者:linger

本文链接:http://blog.csdn.net/lingerlanlan/article/details/38425929



评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值