Construct Binary Tree from Preorder and Inorder Traversal -- LeetCode

原题链接:  http://oj.leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/  
这道题是树中比较有难度的题目,需要根据先序遍历和中序遍历来构造出树来。这道题看似毫无头绪,其实梳理一下还是有章可循的。下面我们就用一个例子来解释如何构造出树。
假设树的先序遍历是12453687,中序遍历是42516837。这里最重要的一点就是先序遍历可以提供根的所在,而根据中序遍历的性质知道根的所在就可以将序列分为左右子树。比如上述例子,我们知道1是根,所以根据中序遍历的结果425是左子树,而6837就是右子树。接下来根据切出来的左右子树的长度又可以在先序便利中确定左右子树对应的子序列(先序遍历也是先左子树后右子树)。根据这个流程,左子树的先序遍历和中序遍历分别是245和425,右子树的先序遍历和中序遍历则是3687和6837,我们重复以上方法,可以继续找到根和左右子树,直到剩下一个元素。可以看出这是一个比较明显的递归过程,对于寻找根所对应的下标,我们可以先建立一个HashMap,以免后面需要进行线行搜索,这样每次递归中就只需要常量操作就可以完成对根的确定和左右子树的分割。
算法最终相当于一次树的遍历,每个结点只会被访问一次,所以时间复杂度是O(n)。而空间我们需要建立一个map来存储元素到下标的映射,所以是O(n)。代码如下:
public TreeNode buildTree(int[] preorder, int[] inorder) {
    if(preorder==null || inorder==null)
        return null;
    HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
    for(int i=0;i<inorder.length;i++)
    {
        map.put(inorder[i],i);
    }
    return helper(preorder,0,preorder.length-1,inorder,0,inorder.length-1, map);
}
private TreeNode helper(int[] preorder, int preL, int preR, int[] inorder, int inL, int inR, HashMap<Integer, Integer> map)
{
    if(preL>preR || inL>inR)
        return null;
    TreeNode root = new TreeNode(preorder[preL]);
    int index = map.get(root.val);
    root.left = helper(preorder, preL+1, index-inL+preL, inorder, inL, index-1, map);
    root.right = helper(preorder, preL+index-inL+1, preR, inorder, index+1, inR,map);
    return root;
}
可以看出上面实现结果还是非常接近于一次树的遍历的,只是我们是以一个构造树的形式,在遍历中把树创建出来。这种题目算是树中的难题了,不过理清思路,其实也不过如此哈~
下面是该段代码的 **Visual Studio 可运行完整版本**,包含: - `TreeNode` 节点定义 - `buildTree` 函数的完整实现(从前序和中序遍历构造二叉- 主函数中测试用例 - 打印构建后的二叉(前序遍历验证) --- ## ✅ Visual Studio 完整运行代码 ```cpp #include <iostream> #include <vector> #include <algorithm> #include <ranges> using namespace std; // 二叉节点定义 struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} TreeNode(int x, TreeNode* left, TreeNode* right) : val(x), left(left), right(right) {} }; class Solution { public: TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) { if (preorder.empty()) { return nullptr; } // 查找根节点在中序遍历中的位置 auto root_it = ranges::find(inorder, preorder[0]); int left_size = distance(inorder.begin(), root_it); // 左子节点数量 // 划分左子和右子的前序和中序序列 vector<int> pre_left(preorder.begin() + 1, preorder.begin() + 1 + left_size); vector<int> pre_right(preorder.begin() + 1 + left_size, preorder.end()); vector<int> in_left(inorder.begin(), inorder.begin() + left_size); vector<int> in_right(inorder.begin() + 1 + left_size, inorder.end()); // 递归构建左右子 TreeNode* left = buildTree(pre_left, in_left); TreeNode* right = buildTree(pre_right, in_right); return new TreeNode(preorder[0], left, right); } // 前序遍历打印二叉 void preorderPrint(TreeNode* root) { if (root == nullptr) { cout << "null "; return; } cout << root->val << " "; preorderPrint(root->left); preorderPrint(root->right); } // 析构函数(手动释放内存) void deleteTree(TreeNode* root) { if (root == nullptr) return; deleteTree(root->left); deleteTree(root->right); delete root; } }; int main() { Solution sol; // 示例输入 vector<int> preorder = {3, 9, 20, 15, 7}; vector<int> inorder = {9, 3, 15, 20, 7}; // 构建二叉 TreeNode* root = sol.buildTree(preorder, inorder); // 打印前序遍历结果以验证是否正确 cout << "构建的二叉前序遍历结果: "; sol.preorderPrint(root); cout << endl; // 释放内存 sol.deleteTree(root); return 0; } ``` --- ## 📌 编译与运行说明(适用于 Visual Studio) 1. 打开 Visual Studio 2. 创建一个 **C++ 控制台应用程序(Console Application)** 3. 删除默认生成的代码内容 4. 将上面的代码粘贴到 `.cpp` 文件中(如 `main.cpp`) 5. 确保你的编译器支持 **C++20**,因为使用了 `<ranges>` 和范围查找 - VS 2022 及以上版本支持 C++20 6. 按 `Ctrl + F5` 或点击 **“本地 Windows 调试器”** 运行程序 --- ## 🧾 输出结果示例 ``` 构建的二叉前序遍历结果: 3 9 null null 20 15 null null 7 null null ``` 说明构建成功,结构如下: ``` 3 / \ 9 20 / \ 15 7 ``` --- ## 🧠 代码解释 - `preorder[0]` 是当前子的根节点。 - 在 `inorder` 中找到该根节点,左边就是左子,右边就是右子- 根据左子大小,划分 `preorder` 中的左右子- 递归构造左右子- 最后返回构造好的当前子根节点。 --- ###
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值