“木桶原理”——吾之见学习法,成长法

 

        大家一看这个图就非常清楚木桶原理想要说的道理,这个原理被很多人拿过来,教育我们如何注意护养调理自己的身体;告诫我们做人做事要做的全面,否则可能因一方面短缺而功亏一篑。也就是我们做任何事情都要考虑到我们最弱势的地方,可能他会成为我们成功与否的关键。

 

         但是在这里我想说的是——反木桶原理,也就是木桶中我们要看的是最长的,它代表着我们的优势,代表着我们特色,我们只要扬长避短,就会有所作为!下边我从学习方法上开始谈谈我的看法!

 

         众所周知,学习是一门艺术。简单来说需要经历预习,学习,复习三个过程。具体来说, 1,需要我们做的是提前将所学的东西做个整体的把握,做到学习要心中有数,不能盲目的去做一些事。也就是我们要有明确的战略,而战术我们可以具体而定。战略是指导我们前进的指挥棒,它指引着我们何时该拼命奋斗,何时该放慢脚步,那部分要重点学习,那部分可以欣赏略读。简单一点说就是我们要知道什么该干什么,不该干什么,该干到什么程度……而具体怎么做就是以后学习的事了。   2,对于具体学习我不想多说,因为因人而异,每个人可以根据自己的特点制定属于自己的学习方法,例如,有的人善于听,他能从听中获得很多知识,有的人善于读,可以从读中获得更多,而有的人善于写,可以从写中获得更多更牢固。但是在这里我要强调的一点就是,总结是非常有必要的,无论是通过书面形式,还是通过心里的构思建立彼此之间的关系,还是口头说给别人等等,总结是非常重要的,因为总结了,我们才能更进步一对知识掌握。3,对于回顾,我想就是需要我们做的大总结,例如我们学习了Visual Basic 这门课程,最后需要我们做的这么书的大概框架,与实际应用的连接,学要我们建立知识之间的网络,使之彼此有关联,使之达到牵一发动全身的效果,而非知识点学习的问题了。

 

        而在这里我想强调的并不是这些东西,我想说的是,完美是人人都追求的,但是我们要做的是我们要抓住对我们最有利的一点,做到精于求精。例如,在这三个方面,我们不要想着把每个部分都做好,都做的特别棒。需要的是我们抓住其一,例如可以是学习过程,可以是总结过程,也可以是预习过程。就我而言,我习惯于总结过程,我习惯于把更多的时间放在总结上,想着是把这部分做到最好。当然这里所说的并不是别的方面就不用做了,而是说我们要有选择的重点去做一部分。

 

        为什么我这样说呢?1,首先,我想说的是我们学习的目的是掌握一门技术,锻炼一种能力,培养一种水平素质,怎样达到这中境界呢?怎样高效的达到这种境界呢? 需要我们做的就是懂得取舍,不要眉毛胡子一把抓,懂得在很短的时间内获得更多的东西!2,当今社会是个日异更新,知识量飞速膨胀的时代,要想跟的上时代的节奏,合理利用时间是非常有效的,这就需要我们重视一些重要的环节,而看淡一些环节。3,这是最重要的一点,这种有取有舍,有重有轻的方法不仅给我们节省时间,它的效果甚至比那样什么都抓,效果会更好。因为很多同学,很多名人,他们抓住了他们觉的重要的一点,将其演绎的淋漓尽致,这点突出了,会带着其他方面好起来达到很好的效果。李阳英语学习中疯狂英语就是一个典型,他重视了朗读,并将其钻研到常人无法到达的地步,最后他们收获了很多。还有我周围的同学,学习理科当中,他们有的把整理错题当做重点,有的把练习课本当做重点,有的把总结当做重点,凡是把自己选择的做好的,最后学习效果都非常好。4,最后我还想说一点,就是我们每个人的精力都是有限的,有时候全抓并不一定是好事,只能使我们适得其反,我们要懂的去高效的做一些事,扬长避短,把自己的长处发挥到淋漓尽致,他会弥补我们的短处的,这句话我觉的是非常对的。

 

        这是学习方法上我们要根基我们的长处,设计不同的学习方法,懂得取舍,把长处发挥到极限,让我们的长处去弥补我们的不足,而不是一个劲的去全抓,去努力拼命的补我们的不足,这样既浪费时间,又浪费精力,而且效果也不一定好,就算效果也不错,但是我们的付出却多了,效率却底了。

 

       谈到这里,我突然又想到更大一点的学习路程,成长路程。作为软件行业的初学者,我们需要做的是初期的打好基础和后期的有选择性,有方向性的的深入学习。不要什么都想做,什么都想学,那样只能使我们什么都做不好,学不好,我们需要做的是下边这幅图。

 

        即使你再聪明,再有精力,你也不可能把所有的技术全学到手,需要做的就是在自己的选择的方向上努力有所作为,而其他的时间我们可以想办法使我们的生活过的更好,因为无论做什么的目的都是想要我们的生活过的更好,所以,利用反木桶原理,用我们的优势去带动我们的不足,抓住我们的优势,发挥它,使她帮助我们更好地学习,更好的成长,更好的生活。

### 木桶原理算法实现 #### 背景介绍 木桶原理的核心在于,整体性能受限于最短的那块木板。这一概念可以被抽象化并应用于多种编程场景中,例如寻找数组中最小子序列的最大值问题[^2]。 #### 算法设计思路 对于给定的一组数据 `a1, a2, ..., an` 表示每一块木板的高度,目标是从这些木板中选取连续的子集来构建一个木桶,并使得该木桶能够容纳尽可能多的水。具体来说: - **输入**: 数组 `[ai]` 和查询参数 `x`。 - **输出**: 使用连续 `x` 块木板所能构的最大容量。 为了高效解决这个问题,我们可以采用滑动窗口技术配合双指针方法来进行优化处理。 #### Python 实现代码 以下是基于上述逻辑的一个简单实现方案: ```python def max_bucket_capacity(boards, queries): result = [] length = len(boards) for x in queries: current_min = float('inf') window_start = 0 # Initialize the first sliding window of size 'x' for i in range(x): current_min = min(current_min, boards[i]) temp_max = current_min # Slide the window forward one by one and update results accordingly. for j in range(x, length): entering_value = boards[j] leaving_value = boards[window_start] if leaving_value == current_min: current_min = min(boards[window_start:j+1]) elif entering_value < current_min: current_min = entering_value temp_max = max(temp_max, current_min) window_start += 1 result.append(temp_max) return result # Example usage: if __name__ == "__main__": heights = [3, 5, 7, 8, 9, 4, 6, 12, 10] query_x_values = [3, 5, 7] capacities = max_bucket_capacity(heights, query_x_values) print(capacities) # Output should reflect maximum possible bucket sizes per each queried value of 'x'. ``` 这段程序定义了一个函数 `max_bucket_capacity`, 它接受两个参数——一个是代表各块木板高度的列表 `boards`; 另外一个是包含不同询问数量 `x` 的列表 `queries`. 函数返回的是针对每次询问所对应的最高可能容量的结果集合. #### 进一步扩展思考 除了基本版本之外还可以考虑加入更多约束条件或者改变规则设定比如允许调整某些特定位置上的数值从而影响最终结果等等情况下的变体形式探讨[^5]. ---
评论 36
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值