lightoj 1236 pairs of lcm

原创 2015年11月19日 19:28:12



1236 - Pairs Forming LCM
PDF (English) Statistics Forum
Time Limit: 2 second(s) Memory Limit: 32 MB

Find the result of the following code:

long long pairsFormLCM( int n ) {
   
 long long res = 0;
   
 for( int i = 1; i <= n; i++ )
       
 for( int j = i; j <= n; j++ )
           
if( lcm(i, j) == n ) res++; // lcm means least common multiple
   
 return res;
}

A straight forward implementation of the code may time out.If you analyze the code, you will find that the code actually counts the numberof pairs (i, j) for which lcm(i, j) = n and (i ≤ j).

Input

Input starts with an integer T (≤ 200),denoting the number of test cases.

Each case starts with a line containing an integer n (1≤ n ≤ 1014).

Output

For each case, print the case number and the value returnedby the function 'pairsFormLCM(n)'.

Sample Input

Output for Sample Input

15

2

3

4

6

8

10

12

15

18

20

21

24

25

27

29

Case 1: 2

Case 2: 2

Case 3: 3

Case 4: 5

Case 5: 4

Case 6: 5

Case 7: 8

Case 8: 5

Case 9: 8

Case 10: 8

Case 11: 5

Case 12: 11

Case 13: 3

Case 14: 4

Case 15: 2

 


Problem Setter: Jane Alam Jan



题意:求1-n中不同的两个数的最小公倍数等于n的个数。

分析:遇到这种题,暴力是不可能的,只有考虑别的方法。考虑将n进行质因数分解。从质因数中找一些线索。

因数分解以后,n=p1^a1 * p2^a2 * p3^a3 * ......  如果两个数(a,b)的lcm为n,把n拆成p1^a1, p2^a2, p3^a3...若干部分,如果a与b质因数分解后与之对应的每一部分幂的最大值小于n的对应部分的幂,那么lcm肯定不是n,所以n的每一部分的幂等于a与b对应部分的幂的最大值。例如第一部分,如果a取了最大值a1,那么b可以取0-a1共a1+1个,如果b取了最大值a1,那么a可以取0-a1共a1+1个,因此就是每次质因数分解质因数的个数 cnt*2-1 个,因为有两次(a1,a1)组合,所有情况相乘,最后除以二(每个数重复了两次)就是答案。


#include<bitset>
#include<map>
#include<vector>
#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<stack>
#include<queue>
#include<set>
#define inf 0x3f3f3f3f
#define mem(a,x) memset(a,x,sizeof(a))

using namespace std;

typedef long long ll;
typedef pair<int,int> pii;

inline ll in()
{
    ll res=0;char c;
    while((c=getchar())<'0' || c>'9');
    while(c>='0' && c<='9')res=res*10+c-'0',c=getchar();
    return res;
}
const int N=10000010;
bitset<N> vis;
int prime[680000];
//一千万以内的素数开68万
//一百万以内的素数开8万
//十万以内的素数开1万
//基本除以10就行
//一万以内的素数直接开一万就行- -
int p;
int main()
{
    int T=in(),ii=1;
    for(int i=2;i<N;i++)
    {
        if(!vis[i])
        {
            prime[p++]=i;
            for(ll j=1LL*i*i;j<N;j+=i) vis[j]=1; //i*i别溢出了,不要只定义j为ll
        }
    }
    while(T--)
    {
        ll n=in();
        ll ans=1;
        for(int i=0;i<p && 1LL*prime[i]*prime[i]<=n;i++)
        {
            int cnt=0;
            while(n%prime[i] == 0)
            {
                n/=prime[i];
                cnt++;
            }
            ans *= ((cnt+1)<<1)-1;
        }
        if(n>1) ans *= 3;
        printf("Case %d: %lld\n",ii++,(ans+1)>>1);
    }
    return 0;
}






版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

lightOJ 1236 Pairs Forming LCM

题目链接:http://lightoj.com/volume_showproblem.php?problem=1236 题意:给你一个数n,让你求满足lcm(a,b)=n的a,b的对数 思路:...

LightOJ - 1236 Pairs Forming LCM【唯一分解定理】

题目链接:http://vjudge.net/contest/70017#problem/H(题目描述在末尾) 题目大意:在a,b中(a,b 素因子分解:n = p1 ^ e1 * p2 ^ e2 *...

LightOJ 1236 Pairs Forming LCM

题目链接:点我Find the result of the following code:long long pairsFormLCM( int n ) { long long res = 0...
  • cccruel
  • cccruel
  • 2017年07月29日 10:24
  • 77

LightOJ 1236 Pairs Forming LCM(算术基本定理)

LightOJ 1236 Pairs Forming LCM题意:long long pairsFormLCM( int n ) { long long res = 0; for( i...

LightOJ 1236 - Pairs Forming LCM (LCM·唯一分解)

题意  给你一个数n  求满足lcm(a, b) == n, a 容易知道 n 是a, b的所有素因子取在a, b中较大指数的积 先将n分解为素数指数积的形式  n = π(pi^ei)    ...
  • acvay
  • acvay
  • 2015年08月07日 09:27
  • 1131

LightOJ1236 - Pairs Forming LCM(LCM+唯一分解定理)

题目链接:https://vjudge.net/problem/LightOJ-1236题目大意:给定一个数nn,求满足i≤j...

LightOJ 1236 Pairs Forming LCM(lcm(i, j) = n的对数)

题目链接: LightOJ 1236 Pairs Forming LCM 题意:long long pairsFormLCM( int n ) { long long res = 0; ...
  • Ramay7
  • Ramay7
  • 2016年05月29日 11:51
  • 474

light oj 1236 Pairs Forming LCM(整数分解)

大概题意是找出对于整数对(i,j),他们的lcm为n,这样的整数对有多少。 看了大牛博客才懂,假设lcm(X,Y)=M,分别分解X,Y,M  X=x1^a1*x2^a2... Y=x1^b1*x2^...

1236 - Pairs Forming LCM (唯一分解定理加组合数学)

一、题目链接:传送门 二、题解:  先对n进行素因子分解,时间复杂度近似sqrt(n) / k,k为一个常数。                       假设 n = a1^p1 * a2 ^...

- Pairs Forming LCM(算数基本定理)

题意:求解小于n的数a,b求有多少对a,b满足lcm(a,b)==n; 分析:由算数基本定理(素数筛)...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:lightoj 1236 pairs of lcm
举报原因:
原因补充:

(最多只允许输入30个字)