关闭

lightoj 1236 pairs of lcm

标签: 数论
200人阅读 评论(0) 收藏 举报
分类:



1236 - Pairs Forming LCM
Time Limit: 2 second(s) Memory Limit: 32 MB

Find the result of the following code:

long long pairsFormLCM( int n ) {
   
 long long res = 0;
   
 for( int i = 1; i <= n; i++ )
       
 for( int j = i; j <= n; j++ )
           
if( lcm(i, j) == n ) res++; // lcm means least common multiple
   
 return res;
}

A straight forward implementation of the code may time out.If you analyze the code, you will find that the code actually counts the numberof pairs (i, j) for which lcm(i, j) = n and (i ≤ j).

Input

Input starts with an integer T (≤ 200),denoting the number of test cases.

Each case starts with a line containing an integer n (1≤ n ≤ 1014).

Output

For each case, print the case number and the value returnedby the function 'pairsFormLCM(n)'.

Sample Input

Output for Sample Input

15

2

3

4

6

8

10

12

15

18

20

21

24

25

27

29

Case 1: 2

Case 2: 2

Case 3: 3

Case 4: 5

Case 5: 4

Case 6: 5

Case 7: 8

Case 8: 5

Case 9: 8

Case 10: 8

Case 11: 5

Case 12: 11

Case 13: 3

Case 14: 4

Case 15: 2

 


Problem Setter: Jane Alam Jan



题意:求1-n中不同的两个数的最小公倍数等于n的个数。

分析:遇到这种题,暴力是不可能的,只有考虑别的方法。考虑将n进行质因数分解。从质因数中找一些线索。

因数分解以后,n=p1^a1 * p2^a2 * p3^a3 * ......  如果两个数(a,b)的lcm为n,把n拆成p1^a1, p2^a2, p3^a3...若干部分,如果a与b质因数分解后与之对应的每一部分幂的最大值小于n的对应部分的幂,那么lcm肯定不是n,所以n的每一部分的幂等于a与b对应部分的幂的最大值。例如第一部分,如果a取了最大值a1,那么b可以取0-a1共a1+1个,如果b取了最大值a1,那么a可以取0-a1共a1+1个,因此就是每次质因数分解质因数的个数 cnt*2-1 个,因为有两次(a1,a1)组合,所有情况相乘,最后除以二(每个数重复了两次)就是答案。


#include<bitset>
#include<map>
#include<vector>
#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<stack>
#include<queue>
#include<set>
#define inf 0x3f3f3f3f
#define mem(a,x) memset(a,x,sizeof(a))

using namespace std;

typedef long long ll;
typedef pair<int,int> pii;

inline ll in()
{
    ll res=0;char c;
    while((c=getchar())<'0' || c>'9');
    while(c>='0' && c<='9')res=res*10+c-'0',c=getchar();
    return res;
}
const int N=10000010;
bitset<N> vis;
int prime[680000];
//一千万以内的素数开68万
//一百万以内的素数开8万
//十万以内的素数开1万
//基本除以10就行
//一万以内的素数直接开一万就行- -
int p;
int main()
{
    int T=in(),ii=1;
    for(int i=2;i<N;i++)
    {
        if(!vis[i])
        {
            prime[p++]=i;
            for(ll j=1LL*i*i;j<N;j+=i) vis[j]=1; //i*i别溢出了,不要只定义j为ll
        }
    }
    while(T--)
    {
        ll n=in();
        ll ans=1;
        for(int i=0;i<p && 1LL*prime[i]*prime[i]<=n;i++)
        {
            int cnt=0;
            while(n%prime[i] == 0)
            {
                n/=prime[i];
                cnt++;
            }
            ans *= ((cnt+1)<<1)-1;
        }
        if(n>1) ans *= 3;
        printf("Case %d: %lld\n",ii++,(ans+1)>>1);
    }
    return 0;
}






0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:37370次
    • 积分:1789
    • 等级:
    • 排名:千里之外
    • 原创:149篇
    • 转载:0篇
    • 译文:0篇
    • 评论:2条
    最新评论