机器学习(四)正规方程求解线性回归问题、正规方法与梯度法的优劣

本文由 @lonelyrains 出品,转载请注明出处。 
文章链接: http://blog.csdn.net/lonelyrains/article/details/48949159


除了梯度向量法, 求解最小J(θ)也是可行的,但是偏微分方程太过复杂。

经数学证明,运用线性代数的公式,直接求解代价函数J(θ)最小时,特征向量θ的取值。 公式为:




正规方程方法与梯度向下方法的优劣

1、优点:

1)前者不需要迭代,不存在无法收敛的问题

2)前者不需要选取初始α


2、缺点:

1)特征向量的维度n,正规方法的算法复杂度大约为O(n^3)。当n较大时,前者比较慢

例如在特征数量n很小时,比如小于1000,使用正规方法求解θ比较快。当n>10000甚至x>10^6时,可能考虑使用梯度下降法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值